Displaying 961 – 980 of 1977

Showing per page

On continuous self-maps and homeomorphisms of the Golomb space

Taras O. Banakh, Jerzy Mioduszewski, Sławomir Turek (2018)

Commentationes Mathematicae Universitatis Carolinae

The Golomb space τ is the set of positive integers endowed with the topology τ generated by the base consisting of arithmetic progressions { a + b n : n 0 } with coprime a , b . We prove that the Golomb space τ has continuum many continuous self-maps, contains a countable disjoint family of infinite closed connected subsets, the set Π of prime numbers is a dense metrizable subspace of τ , and each homeomorphism h of τ has the following properties: h ( 1 ) = 1 , h ( Π ) = Π , Π h ( x ) = h ( Π x ) , and h ( x ) = h ( x ) for all x . Here x : = { x n : n } and Π x denotes the set of prime divisors...

On D -property of strong Σ spaces

Raushan Z. Buzyakova (2002)

Commentationes Mathematicae Universitatis Carolinae

It is shown that every strong Σ space is a D -space. In particular, it follows that every paracompact Σ space is a D -space.

On dense subspaces satisfying stronger separation axioms

Ofelia Teresa Alas, Mihail G. Tkachenko, Vladimir Vladimirovich Tkachuk, Richard Gordon Wilson, Ivan V. Yashchenko (2001)

Czechoslovak Mathematical Journal

We prove that it is independent of ZFC whether every Hausdorff countable space of weight less than c has a dense regular subspace. Examples are given of countable Hausdorff spaces of weight c which do not have dense Urysohn subspaces. We also construct an example of a countable Urysohn space, which has no dense completely Hausdorff subspace. On the other hand, we establish that every Hausdorff space of π -weight less than 𝔭 has a dense completely Hausdorff (and hence Urysohn) subspace. We show that...

On Eberlein compactifications of metrizable spaces

Takashi Kimura, Kazuhiko Morishita (2002)

Fundamenta Mathematicae

We prove that, for every finite-dimensional metrizable space, there exists a compactification that is Eberlein compact and preserves both the covering dimension and weight.

On embeddings into C p ( X ) where X is Lindelöf

Masami Sakai (1992)

Commentationes Mathematicae Universitatis Carolinae

A.V. Arkhangel’skii asked that, is it true that every space Y of countable tightness is homeomorphic to a subspace (to a closed subspace) of C p ( X ) where X is Lindelöf? C p ( X ) denotes the space of all continuous real-valued functions on a space X with the topology of pointwise convergence. In this note we show that the two arrows space is a counterexample for the problem by showing that every separable compact linearly ordered topological space is second countable if it is homeomorphic to a subspace of C p ( X ) ...

On extension of the group operation over the Čech-Stone compactification

Jan Jełowicki (1993)

Colloquium Mathematicae

The convolution of ultrafilters of closed subsets of a normal topological group is considered as a substitute of the extension onto ( β ) 2 of the group operation. We find a subclass of ultrafilters for which this extension is well-defined and give some examples of pathologies. Next, for a given locally compact group and its dense subgroup , we construct subsets of β algebraically isomorphic to . Finally, we check whether the natural mapping from β onto β is a homomorphism with respect to the extension...

Currently displaying 961 – 980 of 1977