Displaying 321 – 340 of 453

Showing per page

Properties of one-point completions of a noncompact metrizable space

Melvin Henriksen, Ludvík Janoš, Grant R. Woods (2005)

Commentationes Mathematicae Universitatis Carolinae

If a metrizable space X is dense in a metrizable space Y , then Y is called a metric extension of X . If T 1 and T 2 are metric extensions of X and there is a continuous map of T 2 into T 1 keeping X pointwise fixed, we write T 1 T 2 . If X is noncompact and metrizable, then ( ( X ) , ) denotes the set of metric extensions of X , where T 1 and T 2 are identified if T 1 T 2 and T 2 T 1 , i.e., if there is a homeomorphism of T 1 onto T 2 keeping X pointwise fixed. ( ( X ) , ) is a large complicated poset studied extensively by V. Bel’nov [The structure of...

Proto-metrizable fuzzy topological spaces

Francisco Gallego Lupiañez (1999)

Kybernetika

In this paper we define for fuzzy topological spaces a notion corresponding to proto-metrizable topological spaces. We obtain some properties of these fuzzy topological spaces, particularly we give relations with non-archimedean, and metrizable fuzzy topological spaces.

Quelques propriétés des espaces α -favorables et applications aux convexes compacts

Gabriel Debs (1980)

Annales de l'institut Fourier

Soit X un espace topologique régulier et fortement α -favorable : si X est image continue d’un espace métrisable séparable alors X est lusinien; ceci répond à une question de R. Haydon. Si X est seulement de Lindelöf et à diagonale G δ alors l’espace mesurable ( X , B a ( X ) ) ) est standard; on en déduit que si l’ensemble des points extrêmaux d’un convexe compact K est de Lindelöf et à diagonale G δ , alors K est métrisable.

Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces

Jiří Matoušek (1992)

Commentationes Mathematicae Universitatis Carolinae

Let ( X , ρ ) , ( Y , σ ) be metric spaces and f : X Y an injective mapping. We put f L i p = sup { σ ( f ( x ) , f ( y ) ) / ρ ( x , y ) ; x , y X , x y } , and dist ( f ) = f L i p . f - 1 L i p (the distortion of the mapping f ). Some Ramsey-type questions for mappings of finite metric spaces with bounded distortion are studied; e.g., the following theorem is proved: Let X be a finite metric space, and let ε > 0 , K be given numbers. Then there exists a finite metric space Y , such that for every mapping f : Y Z ( Z arbitrary metric space) with dist ( f ) < K one can find a mapping g : X Y , such that both the mappings g and f | g ( X ) have distortion at...

Remainders of metrizable and close to metrizable spaces

A. V. Arhangel'skii (2013)

Fundamenta Mathematicae

We continue the study of remainders of metrizable spaces, expanding and applying results obtained in [Fund. Math. 215 (2011)]. Some new facts are established. In particular, the closure of any countable subset in the remainder of a metrizable space is a Lindelöf p-space. Hence, if a remainder of a metrizable space is separable, then this remainder is a Lindelöf p-space. If the density of a remainder Y of a metrizable space does not exceed 2 ω , then Y is a Lindelöf Σ-space. We also show that many of...

Remarks on sequence-covering maps

Luong Quoc Tuyen (2012)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we prove that each sequence-covering and boundary-compact map on g -metrizable spaces is 1-sequence-covering. Then, we give some relationships between sequence-covering maps and 1-sequence-covering maps or weak-open maps, and give an affirmative answer to the problem posed by F.C. Lin and S. Lin in [Lin.F.C.and.Lin.S-2011].

Remarks on Yu’s ‘property A’ for discrete metric spaces and groups

Jean-Louis Tu (2001)

Bulletin de la Société Mathématique de France

Guoliang Yu has introduced a property on discrete metric spaces and groups, which is a weak form of amenability and which has important applications to the Novikov conjecture and the coarse Baum–Connes conjecture. The aim of the present paper is to prove that property in particular examples, like spaces with subexponential growth, amalgamated free products of discrete groups having property A and HNN extensions of discrete groups having property A.

Currently displaying 321 – 340 of 453