Displaying 41 – 60 of 198

Showing per page

Compositions of simple maps

Jerzy Krzempek (1999)

Fundamenta Mathematicae

A map (= continuous function) is of order ≤ k if each of its point-inverses has at most k elements. Following [4], maps of order ≤ 2 are called simple.  Which maps are compositions of simple closed [open, clopen] maps? How many simple maps are really needed to represent a given map? It is proved herein that every closed map of order ≤ k defined on an n-dimensional metric space is a composition of (n+1)k-1 simple closed maps (with metric domains). This theorem fails to be true...

Connected economically metrizable spaces

Taras Banakh, Myroslava Vovk, Michał Ryszard Wójcik (2011)

Fundamenta Mathematicae

A topological space is non-separably connected if it is connected but all of its connected separable subspaces are singletons. We show that each connected sequential topological space X is the image of a non-separably connected complete metric space X under a monotone quotient map. The metric d X of the space X is economical in the sense that for each infinite subspace A ⊂ X the cardinality of the set d X ( a , b ) : a , b A does not exceed the density of A, | d X ( A × A ) | d e n s ( A ) . The construction of the space X determines a functor : Top...

Continuous decompositions of Peano plane continua into pseudo-arcs

Janusz Prajs (1998)

Fundamenta Mathematicae

Locally planar Peano continua admitting continuous decomposition into pseudo-arcs (into acyclic curves) are characterized as those with no local separating point. This extends the well-known result of Lewis and Walsh on a continuous decomposition of the plane into pseudo-arcs.

Cyclic Type Fixed Point Results in 2-Menger Spaces

Binayak S. Choudhury, Samir Kumar BHANDARI, Parbati SAHA (2015)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper we introduce generalized cyclic contractions through r number of subsets of a probabilistic 2-metric space and establish two fixed point results for such contractions. In our first theorem we use the Hadzic type t -norm. In another theorem we use a control function with minimum t -norm. Our results generalizes some existing fixed point theorem in 2-Menger spaces. The results are supported with some examples.

Descriptive properties of mappings between nonseparable Luzin spaces

Petr Holický, Václav Komínek (2007)

Czechoslovak Mathematical Journal

We relate some subsets G of the product X × Y of nonseparable Luzin (e.g., completely metrizable) spaces to subsets H of × Y in a way which allows to deduce descriptive properties of G from corresponding theorems on H . As consequences we prove a nonseparable version of Kondô’s uniformization theorem and results on sets of points y in Y with particular properties of fibres f - 1 ( y ) of a mapping f X Y . Using these, we get descriptions of bimeasurable mappings between nonseparable Luzin spaces in terms of fibres.

Currently displaying 41 – 60 of 198