Displaying 21 – 40 of 129

Showing per page

Central subsets of Urysohn universal spaces

Piotr Niemiec (2009)

Commentationes Mathematicae Universitatis Carolinae

A subset A of a metric space ( X , d ) is central iff for every Katětov map f : X upper bounded by the diameter of X and any finite subset B of X there is x X such that f ( a ) = d ( x , a ) for each a A B . Central subsets of the Urysohn universal space 𝕌 (see introduction) are studied. It is proved that a metric space X is isometrically embeddable into 𝕌 as a central set iff X has the collinearity property. The Katětov maps of the real line are characterized.

Cofinal completeness of the Hausdorff metric topology

Gerald Beer, Giuseppe Di Maio (2010)

Fundamenta Mathematicae

A net in a Hausdorff uniform space is called cofinally Cauchy if for each entourage, there exists a cofinal (rather than residual) set of indices whose corresponding terms are pairwise within the entourage. In a metric space equipped with the associated metric uniformity, if each cofinally Cauchy sequence has a cluster point, then so does each cofinally Cauchy net, and the space is called cofinally complete. Here we give necessary and sufficient conditions for the nonempty closed subsets of the...

Common Fixed Point Theorems in a Complete 2-metric Space

Debashis Dey, Mantu Saha (2013)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In the present paper, we establish a common fixed point theorem for four self-mappings of a complete 2-metric space using the weak commutativity condition and A -contraction type condition and then extend the theorem for a class of mappings.

Commuting contractive families

Luka Milićević (2015)

Fundamenta Mathematicae

A family f₁,..., fₙ of operators on a complete metric space X is called contractive if there exists a positive λ < 1 such that for any x,y in X we have d ( f i ( x ) , f i ( y ) ) λ d ( x , y ) for some i. Austin conjectured that any commuting contractive family of operators has a common fixed point, and he proved this for the case of two operators. We show that Austin’s conjecture is true for three operators, provided that λ is sufficiently small.

Computing complexity distances between algorithms

Salvador Romaguera, Enrique A. Sánchez-Pérez, Oscar Valero (2003)

Kybernetika

We introduce a new (extended) quasi-metric on the so-called dual p-complexity space, which is suitable to give a quantitative measure of the improvement in complexity obtained when a complexity function is replaced by a more efficient complexity function on all inputs, and show that this distance function has the advantage of possessing rich topological and quasi-metric properties. In particular, its induced topology is Hausdorff and completely regular. Our approach is applied to the measurement...

Connected economically metrizable spaces

Taras Banakh, Myroslava Vovk, Michał Ryszard Wójcik (2011)

Fundamenta Mathematicae

A topological space is non-separably connected if it is connected but all of its connected separable subspaces are singletons. We show that each connected sequential topological space X is the image of a non-separably connected complete metric space X under a monotone quotient map. The metric d X of the space X is economical in the sense that for each infinite subspace A ⊂ X the cardinality of the set d X ( a , b ) : a , b A does not exceed the density of A, | d X ( A × A ) | d e n s ( A ) . The construction of the space X determines a functor : Top...

Contractions of Nadler type on partial tvs-cone metric spaces

Xun Ge, Shou Lin (2015)

Colloquium Mathematicae

This paper introduces partial tvs-cone metric spaces as a common generalization of both tvs-cone metric spaces and partial metric spaces, and gives a new fixed point theorem for contractions of Nadler type on partial tvs-cone metric spaces. As corollaries, we obtain the main results of S. B. Nadler (1969), D. Wardowski (2011), S. Radenović et al. (2011) and H. Aydi et al. (2012) are deduced.

Countable dense homogeneity and λ-sets

Rodrigo Hernández-Gutiérrez, Michael Hrušák, Jan van Mill (2014)

Fundamenta Mathematicae

We show that all sufficiently nice λ-sets are countable dense homogeneous (𝖢𝖣𝖧). From this fact we conclude that for every uncountable cardinal κ ≤ 𝔟 there is a countable dense homogeneous metric space of size κ. Moreover, the existence of a meager in itself countable dense homogeneous metric space of size κ is equivalent to the existence of a λ-set of size κ. On the other hand, it is consistent with the continuum arbitrarily large that every 𝖢𝖣𝖧 metric space has size either ω₁ or 𝔠. An...

Currently displaying 21 – 40 of 129