Baire spaces and weak topologies generated by gap and excess functionals
We show that if is a subspace of a linearly ordered space, then is a Baire space if and only if is Choquet iff has the Moving Off Property.
Concepts, definitions, notions, and some facts concerning the Banach-Mazur game are customized to a more general setting of partial orderings. It is applied in the theory of Fraïssé limits and beyond, obtaining simple proofs of universality of certain objects and classes.
∗ The present article was originally submitted for the second volume of Murcia Seminar on Functional Analysis (1989). Unfortunately it has been not possible to continue with Murcia Seminar publication anymore. For historical reasons the present vesion correspond with the original one.Weak completeness properties of Boolean rings are related to the property of being a Baire space (when suitably topologised) and to renorming properties of the Banach spaces of continuous functions on the corresponding...
The purpose of this paper is to give a necessary and sufficient condition to define a category measure on a Baire topological space. In the last section we give some examples of spaces in these conditions.
The ℑ-density topology on ℝ is a refinement of the natural topology. It is a category analogue of the density topology [9, 10]. This paper is concerned with ℑ-density continuous functions, i.e., the real functions that are continuous when the ℑ-densitytopology is used on the domain and the range. It is shown that the family of ordinary continuous functions f: [0,1]→ℝ which have at least one point of ℑ-density continuity is a first category subset of C([0,1])= f: [0,1]→ℝ: f is continuous equipped...
A bijective correspondence between strong inclusions and compactifications in the setting of -frames is presented. The category of uniform -frames is defined and a description of the Samuel compactification is given. It is shown that the Samuel compactification of a uniform frame is completely determined by the -frame consisting of its uniform cozero part, and consequently, any compactification of any frame is so determined.