On σ-connected spaces
We investigate the set of open maps from one Knaster continuum to another. A structure theorem for the semigroup of open induced maps on a Knaster continuum is obtained. Homeomorphisms which are not induced are constructed, and it is shown that the induced open maps are dense in the space of open maps between two Knaster continua. Results about the structure of the semigroup of open maps on a Knaster continuum are obtained and two questions about the structure are posed.
An open continuous map f from a space X onto a paracompact C-space Y admits two disjoint closed sets F₀,F₁ ⊂ X with f(F₀) = Y = f(F₁), provided all fibers of f are infinite and C*-embedded in X. Applications are given to the existence of "disjoint" usco multiselections of set-valued l.s.c. mappings defined on paracompact C-spaces, and to special type of factorizations of open continuous maps from metrizable spaces onto paracompact C-spaces. This settles several open questions.
We show that the Bruschlinsky group with the winding order is a homomorphism invariant for a class of one-dimensional inverse limit spaces. In particular we show that if a presentation of an inverse limit space satisfies the Simplicity Condition, then the Bruschlinsky group with the winding order of the inverse limit space is a dimension group and is a quotient of the dimension group with the standard order of the adjacency matrices associated with the presentation.
In this paper we introduce and investigate the notions of point open order topology, compact open order topology, the order topology of quasi-uniform pointwise convergence and the order topology of quasi-uniform convergence on compacta. We consider the functorial correspondence between function spaces in the categories of topological spaces, bitopological spaces and ordered topological spaces. We obtain extensions to the topological ordered case of classical topological results on function spaces....
We study the roles played by four special types of bases (weakly uniform bases, ω-in-ω bases, open-in-finite bases, and sharp bases) in the classes of linearly ordered and generalized ordered spaces. For example, we show that a generalized ordered space has a weakly uniform base if and only if it is quasi-developable and has a -diagonal, that a linearly ordered space has a point-countable base if and only if it is first-countable and has an ω-in-ω base, and that metrizability in a generalized ordered...