The fixed point property for some cartesian products
It is proved that the cylinder X × I over a planar λ-dendroid X has the fixed point property. This is a partial solution of two problems posed by R. H. Bing (cf. [1], Questions 9 and 10).
It is proved that the cylinder X × I over a planar λ-dendroid X has the fixed point property. This is a partial solution of two problems posed by R. H. Bing (cf. [1], Questions 9 and 10).
Let f be a map of a tree-like continuum M that sends each arc-component of M into itself. We prove that f has a fixed point. Hence every tree-like continuum has the fixed-point property for deformations (maps that are homotopic to the identity). This result answers a question of Bellamy. Our proof resembles an old argument of Brouwer involving uncountably many tangent curves. The curves used by Brouwer were originally defined by Peano. In place of these curves, we use rays that were originally defined...
In this paper we define a space σ(X) for approximate systems of compact spaces. The construction is due to H. Freudenthal for usual inverse sequences [4, p. 153–156]. We establish the following properties of this space: (1) The space σ(X) is a paracompact space, (2) Moreover, if X is an approximate sequence of compact (metric) spaces, then σ(X) is a compact (metric) space (Lemma 2.4). We give the following applications of the space σ(X): (3) If X is an approximate system of continua, then X = limX...
The aim of this paper is to prove the generalized Schoenflies theorem for the class of absolute suspensions. The question whether the finite-dimensional absolute suspensions are homeomorphic to spheres remains open. Partial solution to this question was obtained in [Sz] and [Mi]. Morton Brown gave in [Br] an ingenious proof of the generalized Schoenflies theorem. Careful analysis of his proof reveals that modulo some technical adjustments a similar argument gives an analogous result for the class...
We examine the Gruenhage property, property * (introduced by Orihuela, Smith, and Troyanski), fragmentability, and the existence of σ-isolated networks in the context of linearly ordered topological spaces (LOTS), generalized ordered spaces (GO-spaces), and monotonically normal spaces. We show that any monotonically normal space with property * or with a σ-isolated network must be hereditarily paracompact, so that property * and the Gruenhage property are equivalent in monotonically normal spaces....
Andreas Zastrow conjectured, and Cannon-Conner-Zastrow proved, that filling one hole in the Sierpiński curve with a disk results in a planar Peano continuum that is not homotopy equivalent to a 1-dimensional set. Zastrow's example is the motivation for this paper, where we characterize those planar Peano continua that are homotopy equivalent to 1-dimensional sets. While many planar Peano continua are not homotopy equivalent to 1-dimensional compacta, we prove that each has fundamental group that...
One way to generalize complete Erdős space is to consider uncountable products of zero-dimensional -subsets of the real line, intersected with an appropriate Banach space. The resulting (nonseparable) complete Erdős spaces can be fully classified by only two cardinal invariants, as done in an earlier paper of the authors together with J. van Mill. As we think this is the correct way to generalize the concept of complete Erdős space to a nonseparable setting, natural questions arise about analogies...
An embedding X ⊂ G of a topological space X into a topological group G is called functorial if every homeomorphism of X extends to a continuous group homomorphism of G. It is shown that the interval [0, 1] admits no functorial embedding into a finite-dimensional or metrizable topological group.