On H. Priestley's dual of the category of bounded distributive lattices
The Cantor set and the set of irrational numbers are examples of 0-dimensional, totally disconnected, homogeneous spaces which admit elegant characterizations and which play a crucial role in analysis and dynamical systems. In this paper we will start the study of 1-dimensional, totally disconnected, homogeneous spaces. We will provide a characterization of such spaces and use it to show that many examples of such spaces which exist in the literature in various fields are all homeomorphic. In particular,...
A homeomorphism f:X → X of a compactum X with metric d is expansive if there is c > 0 such that if x,y ∈ X and x ≠ y, then there is an integer n ∈ ℤ such that . A homeomorphism f: X → X is continuum-wise expansive if there is c > 0 such that if A is a nondegenerate subcontinuum of X, then there is an integer n ∈ ℤ such that . Clearly, every expansive homeomorphism is continuum-wise expansive, but the converse assertion is not true. In [6], we defined the notion of chaotic continua of homeomorphisms...
The notion of locally -incomparable families of compacta was introduced by K. Borsuk [KB]. In this paper we shall construct uncountable locally -incomparable families of different types of finite-dimensional Cantor manifolds.
We call a function P-preserving if, for every subspace with property P, its image also has property P. Of course, all continuous maps are both compactness- and connectedness-preserving and the natural question about when the converse of this holds, i.e. under what conditions such a map is continuous, has a long history. Our main result is that any nontrivial product function, i.e. one having at least two nonconstant factors, that has connected domain, range, and is connectedness-preserving...
A Mazurkiewicz set is a subset of a plane with the property that each straight line intersects in exactly two points. We modify the original construction to obtain a Mazurkiewicz set which does not contain vertices of an equilateral triangle or a square. This answers some questions by L.D. Loveland and S.M. Loveland. We also use similar methods to construct a bounded noncompact, nonconnected generalized Mazurkiewicz set.