Displaying 181 – 200 of 363

Showing per page

Non-normality points and nice spaces

Sergei Logunov (2021)

Commentationes Mathematicae Universitatis Carolinae

J. Terasawa in " β X - { p } are non-normal for non-discrete spaces X " (2007) and the author in “On non-normality points and metrizable crowded spaces” (2007), independently showed for any metrizable crowded space X that each point p of its Čech–Stone remainder X * is a non-normality point of β X . We introduce a new class of spaces, named nice spaces, which contains both of Sorgenfrey line and every metrizable crowded space. We obtain the result above for every nice space.

On a -Kasch spaces

Ali Akbar Estaji, Melvin Henriksen (2010)

Archivum Mathematicum

If X is a Tychonoff space, C ( X ) its ring of real-valued continuous functions. In this paper, we study non-essential ideals in C ( X ) . Let a be a infinite cardinal, then X is called a -Kasch (resp. a ¯ -Kasch) space if given any ideal (resp. z -ideal) I with gen ( I ) < a then I is a non-essential ideal. We show that X is an 0 -Kasch space if and only if X is an almost P -space and X is an 1 -Kasch space if and only if X is a pseudocompact and almost P -space. Let C F ( X ) denote the socle of C ( X ) . For a topological space X with only...

On absolute retracts of ω*

A. Bella, A. Błaszczyk, A. Szymański (1994)

Fundamenta Mathematicae

An extremally disconnected space is called an absolute retract in the class of all extremally disconnected spaces if it is a retract of any extremally disconnected compact space in which it can be embedded. The Gleason spaces over dyadic spaces have this property. The main result of this paper says that if a space X of π-weight ω 1 is an absolute retract in the class of all extremally disconnected compact spaces and X is homogeneous with respect to π-weight (i.e. all non-empty open sets have the same...

On butterfly-points in β X , Tychonoff products and weak Lindelöf numbers

Sergei Logunov (2022)

Commentationes Mathematicae Universitatis Carolinae

Let X be the Tychonoff product α < τ X α of τ -many Tychonoff non-single point spaces X α . Let p X * be a point in the closure of some G X whose weak Lindelöf number is strictly less than the cofinality of τ . Then we show that β X { p } is not normal. Under some additional assumptions, p is a butterfly-point in β X . In particular, this is true if either X = ω τ or X = R τ and τ is infinite and not countably cofinal.

On character and chain conditions in images of products

Murray Bell (1998)

Fundamenta Mathematicae

A scadic space is a Hausdorff continuous image of a product of compact scattered spaces. We complete a theorem begun by G. Chertanov that will establish that for each scadic space X, χ(X) = w(X). A ξ-adic space is a Hausdorff continuous image of a product of compact ordinal spaces. We introduce an either-or chain condition called Property R λ ' which we show is satisfied by all ξ-adic spaces. Whereas Property R λ ' is productive, we show that a weaker (but more natural) Property R λ is not productive. Polyadic...

Currently displaying 181 – 200 of 363