Displaying 181 – 200 of 237

Showing per page

Stability of Noor Iteration for a General Class of Functions in Banach Spaces

Alfred Olufemi Bosede (2012)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper, we prove the stability of Noor iteration considered in Banach spaces by employing the notion of a general class of functions introduced by Bosede and Rhoades [6]. We also establish similar result on Ishikawa iteration as a special case. Our results improve and unify some of the known stability results in literature.

Stable rank and real rank of compact transformation group C*-algebras

Robert J. Archbold, Eberhard Kaniuth (2006)

Studia Mathematica

Let (G,X) be a transformation group, where X is a locally compact Hausdorff space and G is a compact group. We investigate the stable rank and the real rank of the transformation group C*-algebra C₀(X)⋊ G. Explicit formulae are given in the case where X and G are second countable and X is locally of finite G-orbit type. As a consequence, we calculate the ranks of the group C*-algebra C*(ℝⁿ ⋊ G), where G is a connected closed subgroup of SO(n) acting on ℝⁿ by rotation.

Strictly convex metric spaces with round balls and fixed points

Inese Bula (2005)

Banach Center Publications

The paper introduces a notion of strictly convex metric space and strictly convex metric space with round balls. These objects generalize the well known concept of strictly convex Banach space. We prove some fixed point theorems in strictly convex metric spaces with round balls.

Currently displaying 181 – 200 of 237