Characterizations and Metrization of Proper Analytic Spaces.
In [5], W. Taylor shows that each particular compact polyhedron can be characterized in the class of all metrizable spaces containing an arc by means of first order properties of its clone of continuous operations. We will show that such a characterization is possible in the class of compact spaces and in the class of Hausdorff spaces containing an arc. Moreover, our characterization uses only the first order properties of the monoid of self-maps. Also, the possibility of characterizing the closed...
We construct a Choquet simplex whose set of extreme points is -analytic, but is not a -Borel set. The set has the surprising property of being a set in its Stone-Cech compactification. It is hence an example of a set that is not absolute.
On cherche à donner une construction aussi simple que possible d'un borélien donné d'un produit de deux espaces polonais. D'où l'introduction de la notion de classe de Wadge potentielle. On étudie notamment ce que signifie "ne pas être potentiellement fermé", en montrant des résultats de type Hurewicz. Ceci nous amène naturellement à des théorèmes d'uniformisation partielle, sur des parties "grosses", au sens du cardinal ou de la catégorie.
Let be a uniformly closed and locally m-convex -algebra. We obtain internal conditions on stated in terms of its closed ideals for to be isomorphic and homeomorphic to , the -algebra of all the real continuous functions on a normal topological space endowed with the compact convergence topology.
This paper discusses properties of the Higson corona by means of a quotient on coarse ultrafilters on a proper metric space. We use this description to show that the corona functor is faithful and reflects isomorphisms.