-minimal subsets of the circle
Necessary conditions are found for a Cantor subset of the circle to be minimal for some -diffeomorphism. These conditions are not satisfied by the usual ternary Cantor set.
Necessary conditions are found for a Cantor subset of the circle to be minimal for some -diffeomorphism. These conditions are not satisfied by the usual ternary Cantor set.
A hull of A ⊆ [0,1] is a set H containing A such that λ*(H) = λ*(A). We investigate all four versions of the following problem. Does there exist a monotone (with respect to inclusion) map that assigns a Borel/ hull to every negligible/measurable subset of [0,1]? Three versions turn out to be independent of ZFC, while in the fourth case we only prove that the nonexistence of a monotone hull operation for all measurable sets is consistent. It remains open whether existence here is also consistent....
We show that a regular totally ω-narrow paratopological group G has countable index of regularity, i.e., for every neighborhood U of the identity e of G, we can find a neighborhood V of e and a countable family of neighborhoods of e in G such that ∩W∈γ VW−1⊆ U. We prove that every regular (Hausdorff) totally !-narrow paratopological group is completely regular (functionally Hausdorff). We show that the index of regularity of a regular paratopological group is less than or equal to the weak Lindelöf...
The ℑ-density topology on ℝ is a refinement of the natural topology. It is a category analogue of the density topology [9, 10]. This paper is concerned with ℑ-density continuous functions, i.e., the real functions that are continuous when the ℑ-densitytopology is used on the domain and the range. It is shown that the family of ordinary continuous functions f: [0,1]→ℝ which have at least one point of ℑ-density continuity is a first category subset of C([0,1])= f: [0,1]→ℝ: f is continuous equipped...
We study relations between the cellularity and index of narrowness in topological groups and their -modifications. We show, in particular, that the inequalities and hold for every topological group and every cardinal , where denotes the underlying group endowed with the -modification of the original topology of and is the index of narrowness of the group . Also, we find some bounds for the complexity of continuous real-valued functions on an arbitrary -narrow group understood...
Given a discrete group , we consider the set of all subgroups of endowed with topology of pointwise convergence arising from the standard embedding of into the Cantor cube . We show that the cellularity for every abelian group , and, for every infinite cardinal , we construct a group with .
Let K(2ℕ) be the class of compact subsets of the Cantor space 2ℕ, furnished with the Hausdorff metric. Let f ∈ C(2ℕ). We study the map ω f: 2ℕ → K(2ℕ) defined as ω f (x) = ω(x, f), the ω-limit set of x under f. Unlike the case of n-dimensional manifolds, n ≥ 1, we show that ω f is continuous for the generic self-map f of the Cantor space, even though the set of functions for which ω f is everywhere discontinuous on a subsystem is dense in C(2ℕ). The relationships between the continuity of ω f and...
A homeomorphism f : X → X of a compactum X is expansive (resp. continuum-wise expansive) if there is c > 0 such that if x, y ∈ X and x ≠ y (resp. if A is a nondegenerate subcontinuum of X), then there is n ∈ ℤ such that (resp. ). We prove the following theorem: If f is a continuum-wise expansive homeomorphism of a compactum X and the covering dimension of X is positive (dim X > 0), then there exists a σ-chaotic continuum Z = Z(σ) of f (σ = s or σ = u), i.e. Z is a nondegenerate subcontinuum...