Displaying 1641 – 1660 of 2392

Showing per page

Partial Fuzzy Metric Space and Some Fixed Point Results

Shaban Sedghi, Nabi Shobkolaei, Ishak Altun (2015)

Communications in Mathematics

In this paper, we introduce the concept of partial fuzzy metric on a nonempty set X and give the topological structure and some properties of partial fuzzy metric space. Then some fixed point results are provided.

PCA sets and convexity

R. Kaufman (2000)

Fundamenta Mathematicae

Three sets occurring in functional analysis are shown to be of class PCA (also called Σ 2 1 ) and to be exactly of that class. The definition of each set is close to the usual objects of modern analysis, but some subtlety causes the sets to have a greater complexity than expected. Recent work in a similar direction is in [1, 2, 10, 11, 12].

Perfect mappings in topological groups, cross-complementary subsets and quotients

Aleksander V. Arhangel'skii (2003)

Commentationes Mathematicae Universitatis Carolinae

The following general question is considered. Suppose that G is a topological group, and F , M are subspaces of G such that G = M F . Under these general assumptions, how are the properties of F and M related to the properties of G ? For example, it is observed that if M is closed metrizable and F is compact, then G is a paracompact p -space. Furthermore, if M is closed and first countable, F is a first countable compactum, and F M = G , then G is also metrizable. Several other results of this kind are obtained....

Periods and entropy for Lorenz-like maps

Lluis Alsedà, J. Llibre, M. Misiurewicz, C. Tresser (1989)

Annales de l'institut Fourier

We characterize the set of periods and its structure for the Lorenz-like maps depending on the rotation interval. Also, for these maps we give the best lower bound of the topological entropy as a function of the rotation interval.

Poincaré's recurrence theorem for set-valued dynamical systems

Jean-Pierre Aubin, Hélène Frankowska, Andrzej Lasota (1991)

Annales Polonici Mathematici

 Abstract. The existence theorem of an invariant measure and Poincare's Recurrence Theorem are extended to set-valued dynamical systems with closed graph on a compact metric space.

Points with maximal Birkhoff average oscillation

Jinjun Li, Min Wu (2016)

Czechoslovak Mathematical Journal

Let f : X X be a continuous map with the specification property on a compact metric space X . We introduce the notion of the maximal Birkhoff average oscillation, which is the “worst” divergence point for Birkhoff average. By constructing a kind of dynamical Moran subset, we prove that the set of points having maximal Birkhoff average oscillation is residual if it is not empty. As applications, we present the corresponding results for the Birkhoff averages for continuous functions on a repeller and locally...

Currently displaying 1641 – 1660 of 2392