Category weight: new ideas concerning Lusternik-Schnirelmann category
Generally, in homotopy theory a cylinder object (or, its dual, a path object) is used to define homotopy between morphisms, and a cone object is used to build exact sequences of homotopy groups. Here, an axiomatic theory based on a cone functor is given. Suspension objects are associated to based objects and cofibrations, obtaining homotopy groups referred to an object and relative to a cofibration, respectively. Exact sequences of these groups are built. Algebraic and particular examples are given....
In this paper we improve recent results dealing with cellular covers of R-modules. Cellular covers (sometimes called colocalizations) come up in the context of homotopical localization of topological spaces. They are related to idempotent cotriples, idempotent comonads or coreflectors in category theory. Recall that a homomorphism of R-modules π: G → H is called a cellular cover over H if π induces an isomorphism , where π⁎(φ) = πφ for each (where maps are acting on the left). On the one hand,...