Points quadruples d'immersions de variétés de dimension trois en codimension un
In 1968 K. Borsuk asked: Does every polyhedron dominate only finitely many different shapes? In this question the notion of shape can be replaced by the notion of homotopy type. We showed earlier that the answer to the Borsuk question is no. However, in a previous paper we proved that every simply connected polyhedron dominates only finitely many different homotopy types (equivalently, shapes). Here we prove that the same is true for polyhedra with finite fundamental group.
The notions of capacity and depth of compacta were introduced by K. Borsuk in the seventies together with some open questions. In a previous paper, in connection with one of them, we proved that there exist polyhedra with polycyclic fundamental groups and infinite capacity, i.e. dominating infinitely many different homotopy types (or equivalently, shapes). In this paper we show that every polyhedron with virtually polycyclic fundamental group has finite depth, i.e., there is a bound on the lengths...
[For the entire collection see Zbl 0699.00032.] It was previously known that for every principal fibre bundle P there is some corresponding transitive Lie algebroid A(P) - a vector bundle equipped with some structure like the structure of a Lie algebra in the module of sections. The author of this article shows that the Chern-Weil homomorphism of P is a notion of the Lie algebroid of P, i.e. knowing only A(P) of P one can uniquely reproduce the ring of invariant polynomials and the Chern-Weil...
Combining the approach to Thom polynomials via classifying spaces of singularities with the Fulton-Lazarsfeld theory of cone classes and positive polynomials for ample vector bundles, we show that the coefficients of the Schur function expansions of the Thom polynomials of stable singularities are nonnegative with positive sum.
We study Thom polynomials associated with Lagrange singularities. We expand them in the basis of Q̃-functions. This basis plays a key role in the Schubert calculus of isotropic Grassmannians. We prove that the Q̃-function expansions of the Thom polynomials of Lagrange singularities always have nonnegative coefficients. This is an analog of a result on the Thom polynomials of mapping singularities and Schur S-functions, established formerly by the last two authors.
It is known that the order of all Postnikov k-invariants of an H-space of finite type is finite. This paper establishes the finiteness of the order of the k-invariants of X in dimensions m ≤ 2n if X is an (n-1)-connected H-space which is not necessarily of finite type (n ≥ 1). Similar results hold more generally for higher k-invariants if X is an iterated loop space. Moreover, we provide in all cases explicit universal upper bounds for the order of the k-invariants of X.
In this paper we use the fact that the rings of integer matrices have the power-substitution property in order to obtain a power-cancellation property for homotopy types of CW-complexes with one cell in dimensions 0 and 4n and a finite number of cells in dimension 2n.