Une propriété homotopique des cofibrations
Dans cet article, on construit une résolution injective explicite des puissances symétriques tordues dans la catégorie des foncteurs strictement polynomiaux. Cette construction généralise à toute caractéristique la construction donnée par Friedlander et Suslin en caractéristique 2.
A categorical generalization of the notion of movability from inverse systems and shape theory was given by the first author who defined the notion of movable category and used it to interpret the movability of topological spaces. In this paper the authors define the notion of uniformly movable category and prove that a topological space is uniformly movable in the sense of shape theory if and only if its comma category in the homotopy category HTop over the subcategory HPol of polyhedra is uniformly...
We prove that for every compactum X and every integer n ≥ 2 there are a compactum Z of dimension ≤ n+1 and a surjective -map r: Z → X such that for every abelian group G and every integer k ≥ 2 such that we have and r is G-acyclic.