On p-equivalences and p-universal spaces
We prove that for any positive integers there exists a real flag manifold with cup-length equal to its dimension. Additionally, we give a necessary condition that an arbitrary real flag manifold needs to satisfy in order to have cup-length equal to its dimension.
We show that coefficients of residue formulas for characteristic numbers associated to a smooth toral action on a manifold can be taken in a quotient field This yields canonical identities over the integers and, reducing modulo two, residue formulas for Stiefel Whitney numbers.