Displaying 141 – 160 of 242

Showing per page

Stable rational cohomology of automorphism groups of free groups and the integral cohomology of moduli spaces of graphs.

Craig A. Jensen (2002)

Publicacions Matemàtiques

It is not known whether or not the stable rational cohomology groups H*(Aut(F∞);Q) always vanish (see Hatcher in [5] and Hatcher and Vogtmann in [7] where they pose the question and show that it does vanish in the first 6 dimensions). We show that either the rational cohomology does not vanish in certain dimensions, or the integral cohomology of a moduli space of pointed graphs does not stabilize in certain other dimensions. Similar results are stated for groups of outer automorphisms. This yields...

Stratifications of teardrops

Bruce Hughes (1999)

Fundamenta Mathematicae

Teardrops are generalizations of open mapping cylinders. We prove that the teardrop of a stratified approximate fibration X → Y × ℝ with X and Y homotopically stratified spaces is itself a homotopically stratified space (under mild hypothesis). This is applied to manifold stratified approximate fibrations between manifold stratified spaces in order to establish the realization part of a previously announced tubular neighborhood theory.

Stratified model categories

Jan Spaliński (2003)

Fundamenta Mathematicae

The fourth axiom of a model category states that given a commutative square of maps, say i: A → B, g: B → Y, f: A → X, and p: X → Y such that gi = pf, if i is a cofibration, p a fibration and either i or p is a weak equivalence, then a lifting (i.e. a map h: B → X such that ph = g and hi = f) exists. We show that for many model categories the two conditions that either i or p above is a weak equivalence can be embedded in an infinite number of conditions which imply the existence of a lifting (roughly,...

Strong Cohomological Dimension

Jerzy Dydak, Akira Koyama (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

We characterize strong cohomological dimension of separable metric spaces in terms of extension of mappings. Using this characterization, we discuss the relation between strong cohomological dimension and (ordinal) cohomological dimension and give examples to clarify their gaps. We also show that I n d G X = d i m G X if X is a separable metric ANR and G is a countable Abelian group. Hence d i m X = d i m X for any separable metric ANR X.

Currently displaying 141 – 160 of 242