The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This is the first part of a paper that classifies 2-compact groups. In this first part we formulate a general classification scheme for 2-compact groups in terms of their maximal torus normalizer pairs. We apply this general classification procedure to the simple 2-compact groups of the A-family and show that any simple 2-compact group that is locally isomorphic to PGL(n+1,ℂ) is uniquely N-determined. Thus there are no other 2-compact groups in the A-family than the ones we already know. We also...
This is the second part of a paper about the classification of 2-compact groups. In the first part we set up a general classification procedure and applied it to the simple 2-compact groups of the A-family. In this second part we deal with the other simple Lie groups and with the exotic simple 2-compact group DI(4). We show that all simple 2-compact groups are uniquely N-determined and conclude that all connected 2-compact groups are uniquely N-determined. This means that two connected 2-compact...
In this paper we study the nilpotency of certain groups of self homotopy equivalences. Our main goal is to extend, to localized homotopy groups and/or homotopy groups with coefficients, the general principle of Dror and Zabrodsky by which a group of self homotopy equivalences of a finite complex which acts nilpotently on the homotopy groups is itself nilpotent.
Currently displaying 1 –
6 of
6