Loading [MathJax]/extensions/MathZoom.js
Un des problèmes historiques de la théorie homotopique des espaces est de mesurer l’effet de l’attachement d’une cellule au niveau des groupes d’homotopie. Le problème de l’attachement inerte reste en particulier un problème ouvert. Nous donnons ici une réponse partielle à ce problème.
Cet article contient une démonstration géométrique simple de pour .Ce résultat (démontré aussi par Mather comme corollaire d’un théorème beaucoup plus général) apparaît comme une conséquence du théorème de Michael Herman : .L’appendice contient une étude des structures sur les surfaces et un résultat sur la cohomologie de .
Let Sr be the category of r-reduced simplicial sets, r ≥ 3; let Lr-1 be the category of (r-1)-reduced differential graded Lie algebras over Z. According to the fundamental work [3] of W.G. Dwyer both categories are endowed with closed model category structures such that the associated tame homotopy category of Sr is equivalent to the associated homotopy category of Lr-1. Here we embark on a study of this equivalence and its implications. In particular, we show how to compute homology, cohomology,...
The purpose of this note is to prove the exponential law for uniformly continuous proper maps.
Currently displaying 1 –
18 of
18