Page 1

Displaying 1 – 18 of 18

Showing per page

Effet d'un attachement cellulaire dans l'homologie de l'espace des lacets

Yves Félix, Jean-Claude Thomas (1989)

Annales de l'institut Fourier

Un des problèmes historiques de la théorie homotopique des espaces est de mesurer l’effet de l’attachement d’une cellule au niveau des groupes d’homotopie. Le problème de l’attachement inerte reste en particulier un problème ouvert. Nous donnons ici une réponse partielle à ce problème.

Étude des Γ -structures de codimension 1 sur la sphère S 2

Claude Roger (1973)

Annales de l'institut Fourier

Cet article contient une démonstration géométrique simple de π 2 ( B Γ 1 r ) = 0 pour r = 0 , .Ce résultat (démontré aussi par Mather comme corollaire d’un théorème beaucoup plus général) apparaît comme une conséquence du théorème de Michael Herman : Diff S 1 [ Diff S 1 , Diff S 1 ] = 0 .L’appendice contient une étude des Γ structures sur les surfaces et un résultat sur la cohomologie de Diff S 1 .

Exploring W.G. Dwyer's tame homotopy theory.

Hans Scheerer, Daniel Tanré (1991)

Publicacions Matemàtiques

Let Sr be the category of r-reduced simplicial sets, r ≥ 3; let Lr-1 be the category of (r-1)-reduced differential graded Lie algebras over Z. According to the fundamental work [3] of W.G. Dwyer both categories are endowed with closed model category structures such that the associated tame homotopy category of Sr is equivalent to the associated homotopy category of Lr-1. Here we embark on a study of this equivalence and its implications. In particular, we show how to compute homology, cohomology,...

Currently displaying 1 – 18 of 18

Page 1