Cohomology mod3 of the classifying space of the Lie group E...
Let be a set of all possible nonequivalent systems of local integer coefficients over the classifying space . We introduce a cohomology ring , which has a structure of a -graded ring, and describe it in terms of generators and relations. The cohomology ring with integer coefficients is contained as its subring. This result generalizes both the description of the cohomology with the nontrivial system of local integer coefficients of in [Č] and the description of the cohomology with integer...
In this paper we compute topological invariants for some configuration spaces of complex projective spaces. We shall describe Sullivan models for these configuration spaces.
We give a survey of the work of Milnor, Friedlander, Mislin, Suslin and other authors on the Friedlander-Milnor conjecture on the homology of Lie groups made discrete and its relation to the algebraic K-theory of fields.
In this paper integer cohomology rings of Artin groups associated with exceptional groups are determined. Computations have been carried out by using an effective method for calculation of cup product in cellular cohomology which we introduce here. Actually, our method works in general for any finite regular complex with identifications, the regular complex being geometrically realized by a compact orientable manifold, possibly with boundary.
A bipolynomial is a holomorphic mapping of a sphere onto a sphere such that some point on the target sphere has exactly two preimages. The topological invariants of spaces of bipolynomials without multiple roots are connected with characteristic classes of rational functions with two poles and generalized braid groups associated to extended affine Weyl groups of the serie . We prove that the cohomology rings of the spaces of bipolynomials of bidegree stabilize as tends to infinity and that...
This paper is devoted to an exposition of cohomology theories on categories of spaces where the cohomology theories satisfy the type of axiom system considered in [1, 12, 16, 17, 18]. The categories considered are Ccomp, the category of all compact Haudorff spaces and continuous functions between them, and Cloc comp, the category of all locally compact Hausdorff spaces and proper continuous functions between them. The fundamental uniqueness theorem for cohomology theories on a finite dimensional...