Displaying 301 – 320 of 4977

Showing per page

A topological version of Bertini's theorem

Artur Piękosz (1995)

Annales Polonici Mathematici

We give a topological version of a Bertini type theorem due to Abhyankar. A new definition of a branched covering is given. If the restriction π V : V Y of the natural projection π: Y × Z → Y to a closed set V ⊂ Y × Z is a branched covering then, under certain assumptions, we can obtain generators of the fundamental group π₁((Y×Z).

A topological view of ordered groups

Dale Rolfsen (2014)

Banach Center Publications

In this expository article we use topological ideas, notably compactness, to establish certain basic properties of orderable groups. Many of the properties we shall discuss are well-known, but I believe some of the proofs are new. These will be used, in turn, to prove some orderability results, including the left-orderability of the group of PL homeomorphisms of a surface with boundary, which are fixed on at least one boundary component.

A TQFT for Wormhole cobordisms over the field of rational functions

Patrick Gilmer (1998)

Banach Center Publications

We consider a cobordism category whose morphisms are punctured connected sums of S 1 × S 2 ’s (wormhole spaces) with embedded admissibly colored banded trivalent graphs. We define a TQFT on this cobordism category over the field of rational functions in an indeterminant A. For r large, we recover, by specializing A to a primitive 4rth root of unity, the Witten-Reshetikhin-Turaev TQFT restricted to links in wormhole spaces. Thus, for r large, the rth Witten-Reshetikhin-Turaev invariant of a link in some wormhole...

A twisted dimer model for knots

Moshe Cohen, Oliver T. Dasbach, Heather M. Russell (2014)

Fundamenta Mathematicae

We develop a dimer model for the Alexander polynomial of a knot. This recovers Kauffman's state sum model for the Alexander polynomial using the language of dimers. By providing some additional structure we are able to extend this model to give a state sum formula for the twisted Alexander polynomial of a knot depending on a representation of the knot group.

A type of non-equivalent pseudogroups. Application to foliations

Jesús A. Alvarez López (1992)

Annales Polonici Mathematici

A topological result for non-Hausdorff spaces is proved and used to obtain a non-equivalence theorem for pseudogroups of local transformations. This theorem is applied to the holonomy pseudogroup of foliations.

A vanishing theorem for twisted Alexander polynomials with applications to symplectic 4-manifolds

Stefan Friedl, Stefano Vidussi (2013)

Journal of the European Mathematical Society

In this paper we show that given any 3-manifold N and any non-fibered class in H 1 ( N ; Z ) there exists a representation such that the corresponding twisted Alexander polynomial is zero. We obtain this result by extending earlier work of ours and by combining this with recent results of Agol and Wise on separability of 3-manifold groups. This result allows us to completely classify symplectic 4-manifolds with a free circle action, and to determine their symplectic cones.

Currently displaying 301 – 320 of 4977