Semi-free Zp-Actions on Highly-Connected Manifolds.
A coordinate cone in is an intersection of some coordinate hyperplanes and open coordinate half-spaces. A semi-monotone set is an open bounded subset of , definable in an o-minimal structure over the reals, such that its intersection with any translation of any coordinate cone is connected. This notion can be viewed as a generalization of convexity. Semi-monotone sets have a number of interesting geometric and combinatorial properties. The main result of the paper is that every semi-monotone...
We define the separatrices for pseudogroups of diffeomorphisms of open neighbourhoods of the origin in the complex plane and prove their existence for non solvable pseudogroups (Theorem 1). This extends a result by Shcherbakov (in [21]) accurately. Our method also applies to prove the topological rigidity theorem for generic pseudogroups attributed to Shcherbakov (dans [20]).
We define sewn elliptic cohomologies for vertex algebras by sewing procedure for coboundary operators.
In this paper we analyze the limit set of nonelementary subgroups acting by isometries on the product of two pinched Hadamard manifolds. Following M. Burger’s and P. Albuquerque’s works, we study the properties of Patterson-Sullivan’s measures on the limit sets of graph groups associated to convex cocompact groups.
A sharp-move is known as an unknotting operation for knots. A self sharp-move is a sharp-move on a spatial graph where all strings in the move belong to the same spatial edge. We say that two spatial embeddings of a graph are sharp edge-homotopic if they are transformed into each other by self sharp-moves and ambient isotopies. We investigate how is the sharp edge-homotopy strong and classify all spatial theta curves completely up to sharp edge-homotopy. Moreover we mention a relationship between...
Given a sequence of oriented links L¹,L²,L³,... each of which has a distinguished, unknotted component, there is a decomposition space 𝓓 of S³ naturally associated to it, which is constructed as the components of the intersection of an infinite sequence of nested solid tori. The Bing and Whitehead continua are simple, well known examples. We give a necessary and sufficient criterion to determine whether 𝓓 is shrinkable, generalising previous work of F. Ancel and M. Starbird and others. This criterion...