The search session has expired. Please query the service again.
Displaying 121 –
140 of
188
We explain how rank two Frobenius extensions of commutative rings lead to link homology theories and discuss relations between these theories, Bar-Natan theories, equivariant cohomology and the Rasmussen invariant.
In this paper we define a link homotopy invariant of spatial graphs based on the second degree coefficient of the Conway polynomial of a knot.
A birack is an algebraic structure with axioms encoding the blackboard-framed Reidemeister moves, incorporating quandles, racks, strong biquandles and semiquandles as special cases. In this paper we extend the counting invariant for finite racks to the case of finite biracks. We introduce a family of biracks generalizing Alexander quandles, (t,s)-racks, Alexander biquandles and Silver-Williams switches, known as (τ,σ,ρ)-biracks. We consider enhancements of the counting invariant using writhe vectors,...
We define ambient isotopy invariants of oriented knots and links using the counting invariants of framed links defined by finite racks. These invariants reduce to the usual quandle counting invariant when the rack in question is a quandle. We are able to further enhance these counting invariants with 2-cocycles from the coloring rack's second rack cohomology satisfying a new degeneracy condition which reduces to the usual case for quandles.
Given a link map f into a manifold of the form Q = N × ℝ, when can it be deformed to an “unlinked” position (in some sense, e.g. where its components map to disjoint ℝ-levels)? Using the language of normal bordism theory as well as the path space approach of Hatcher and Quinn we define obstructions , ε = + or ε = -, which often answer this question completely and which, in addition, turn out to distinguish a great number of different link homotopy classes. In certain cases they even allow a complete...
For a Morse function on a compact oriented manifold , we show that has more critical points than the number required by the Morse inequalities if and only if there exists a certain class of link in whose components have nontrivial linking number, such that the minimal value of on one of the components is larger than its maximal value on the other. Indeed we characterize the precise number of critical points of in terms of the Betti numbers of and the behavior of with respect to links....
We generate families of commutation relations in various groups, by examining quandle colorings of knots and their quandle 2-cycles. The colorings are via quandles associated to the given groups.
We show that Lissajous knots are equivalent to billiard knots in a cube. We consider also knots in general 3-dimensional billiard tables. We analyse symmetry of knots in billiard tables and show in particular that the Alexander polynomial of a Lissajous knot is a square modulo 2.
Currently displaying 121 –
140 of
188