Page 1

Displaying 1 – 8 of 8

Showing per page

Sharp edge-homotopy on spatial graphs.

Ryo Nikkuni (2005)

Revista Matemática Complutense

A sharp-move is known as an unknotting operation for knots. A self sharp-move is a sharp-move on a spatial graph where all strings in the move belong to the same spatial edge. We say that two spatial embeddings of a graph are sharp edge-homotopic if they are transformed into each other by self sharp-moves and ambient isotopies. We investigate how is the sharp edge-homotopy strong and classify all spatial theta curves completely up to sharp edge-homotopy. Moreover we mention a relationship between...

Symmetries of embedded complete bipartite graphs

Erica Flapan, Nicole Lehle, Blake Mellor, Matt Pittluck, Xan Vongsathorn (2014)

Fundamenta Mathematicae

We characterize which automorphisms of an arbitrary complete bipartite graph K n , m can be induced by a homeomorphism of some embedding of the graph in S³.

Symmetries of spatial graphs and Simon invariants

Ryo Nikkuni, Kouki Taniyama (2009)

Fundamenta Mathematicae

An ordered and oriented 2-component link L in the 3-sphere is said to be achiral if it is ambient isotopic to its mirror image ignoring the orientation and ordering of the components. Kirk-Livingston showed that if L is achiral then the linking number of L is not congruent to 2 modulo 4. In this paper we study orientation-preserving or reversing symmetries of 2-component links, spatial complete graphs on 5 vertices and spatial complete bipartite graphs on 3 + 3 vertices in detail, and determine...

Currently displaying 1 – 8 of 8

Page 1