Kashaev's conjecture and the Chern-Simons invariants of knots and links.
Mikhail Khovanov defined, for a diagram of an oriented classical link, a collection of groups labelled by pairs of integers. These groups were constructed as the homology groups of certain chain complexes. The Euler characteristics of these complexes are the coefficients of the Jones polynomial of the link. The original construction is overloaded with algebraic details. Most of the specialists use adaptations of it stripped off the details. The goal of this paper is to overview these adaptations...
For any positive integer n, Khovanov and Rozansky constructed a bigraded link homology from which you can recover the 𝔰𝔩ₙ link polynomial invariants. We generalize the Khovanov-Rozansky construction in the case of finite 4-valent graphs embedded in a ball B³ ⊂ ℝ³. More precisely, we prove that the homology associated to a diagram of a 4-valent graph embedded in B³ ⊂ ℝ³ is invariant under the graph moves introduced by Kauffman.
We analyse perturbative expansions of the invariants defined from unitary representations of the Quantum Lorentz Group in two different ways, namely using the Kontsevich Integral and weight systems, and the R-matrix in the Quantum Lorentz Group defined by Buffenoir and Roche. The two formulations are proved to be equivalent; and they both yield ℂ[[h]]h-valued knot invariants related with the Melvin-Morton expansion of the Coloured Jones Polynomial.