Displaying 281 – 300 of 454

Showing per page

On the structure of closed 3-manifolds

Jan Mycielski (2003)

Fundamenta Mathematicae

We will show that for every irreducible closed 3-manifold M, other than the real projective space P³, there exists a piecewise linear map f: S → M where S is a non-orientable closed 2-manifold of Euler characteristic χ ≡ 2 (mod 3) such that | f - 1 ( x ) | 2 for all x ∈ M, the closure of the set x M : | f - 1 ( x ) | = 2 is a cubic graph G such that S - f - 1 ( G ) consists of 1/3(2-χ) + 2 simply connected regions, M - f(S) consists of two disjoint open 3-cells such that f(S) is the boundary of each of them, and f has some additional interesting properties....

Open 3-manifolds, wild subsets of S3 and branched coverings.

José María Montesinos-Amilibia (2003)

Revista Matemática Complutense

In this paper, a representation of closed 3-manifolds as branched coverings of the 3-sphere, proved in [13], and showing a relationship between open 3-manifolds and wild knots and arcs will be illustrated by examples. It will be shown that there exist a 3-fold simple covering p : S3 --> S3 branched over the remarkable simple closed curve of Fox [4] (a wild knot). Moves are defined such that when applied to a branching set, the corresponding covering manifold remains unchanged, while the branching...

Preuve de la conjecture de Poincaré en déformant la métrique par la courbure de Ricci

Gérard Besson (2004/2005)

Séminaire Bourbaki

Nous présentons la preuve de la conjecture de Poincaré, concernant les variétés compactes simplement connexes de dimension 3 , proposée par G. Perel’man. Elle repose sur l’étude de l’évolution de métriques riemanniennes sous le flot de la courbure de Ricci et sur les travaux antérieurs de R. Hamilton. Après une introduction aux techniques analytiques et géométriques développées par R. Hamilton, nous tentons de décrire la méthode de chirurgie métrique utilisée par G. Perel’man pour franchir les temps...

Properly homotopic nontrivial planes are isotopic

Bobby Winters (1995)

Fundamenta Mathematicae

It is proved that two planes that are properly homotopic in a noncompact, orientable, irreducible 3-manifold that is not homeomorphic to 3 are isotopic. The end-reduction techniques of E. M. Brown and C. D. Feustal and M. G. Brin and T. L. Thickstun are used.

Currently displaying 281 – 300 of 454