Connectedness of Certain Subsets of Locally Convex Spaces.
In this paper, we present a new approach to the construction of Einstein metrics by a generalization of Thurston's Dehn filling. In particular in dimension 3, we will obtain an analytic proof of Thurston's result.
We prove a structure theorem for closed, orientable 5-manifolds with fundamental group and second Stiefel-Whitney class equal to zero on . This structure theorem is then used to construct contact structures on such manifolds by applying contact surgery to fake projective spaces and certain -quotients of .
In this paper we present selected properties of barycentric coordinates in the Euclidean topological space. We prove the topological correspondence between a subset of an affine closed space of εn and the set of vectors created from barycentric coordinates of points of this subset.