Displaying 41 – 60 of 103

Showing per page

Spaces of measurable functions

Piotr Niemiec (2013)

Open Mathematics

For a metrizable space X and a finite measure space (Ω, 𝔐 , µ), the space M µ(X) of all equivalence classes (under the relation of equality almost everywhere mod µ) of 𝔐 -measurable functions from Ω to X, whose images are separable, equipped with the topology of convergence in measure, and some of its subspaces are studied. In particular, it is shown that M µ(X) is homeomorphic to a Hilbert space provided µ is (nonzero) nonatomic and X is completely metrizable and has more than one point.

Spaces of upper semicontinuous multi-valued functions on complete metric spaces

Katsuro Sakai, Shigenori Uehara (1999)

Fundamenta Mathematicae

Let X = (X,d) be a metric space and let the product space X × ℝ be endowed with the metric ϱ ((x,t),(x’,t’)) = maxd(x,x’), |t - t’|. We denote by U S C C B ( X ) the space of bounded upper semicontinuous multi-valued functions φ : X → ℝ such that each φ(x) is a closed interval. We identify φ U S C C B ( X ) with its graph which is a closed subset of X × ℝ. The space U S C C B ( X ) admits the Hausdorff metric induced by ϱ. It is proved that if X = (X,d) is uniformly locally connected, non-compact and complete, then U S C C B ( X ) is homeomorphic to a...

Straightening cell decompositions of cusped hyperbolic 3-manifolds

Marina Pescini (1998)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let M be an oriented cusped hyperbolic 3-manifold and let τ be a topological ideal triangulation of M . We give a characterization for τ to be isotopic to an ideal geodesic triangulation; moreover we give a characterization for τ to flatten into a partially flat triangulation. Finally we prove that straightening combinatorially equivalent topological ideal cell decompositions gives the same geodesic decomposition, up to isometry.

Stratifications of polynomial spaces

Lev Birbrair (1998)

Publicacions Matemàtiques

In the paper we construct some stratifications of the space of monic polynomials in real and complex cases. These stratifications depend on properties of roots of the polynomials on some given semialgebraic subset of R or C. We prove differential triviality of these stratifications. In the real case the proof is based on properties of the action of the group of interval exchange transformations on the set of all monic polynomials of some given degree. Finally we compare stratifications corresponding...

Currently displaying 41 – 60 of 103