The Degree and Branch Set of a Branched Covering.
We prove the “End Curve Theorem,” which states that a normal surface singularity with rational homology sphere link is a splice quotient singularity if and only if it has an end curve function for each leaf of a good resolution tree. An “end curve function” is an analytic function whose zero set intersects in the knot given by a meridian curve of the exceptional curve corresponding to the given leaf. A “splice quotient singularity” is described by giving an explicit set of equations describing...
We show that the Fukumoto-Furuta invariant for a rational homology 3-sphere M, which coincides with the Neumann-Siebenmann invariant for a Seifert rational homology 3-sphere, is the same as the Ozsváth-Szabó's correction term derived from the Heegaard Floer homology theory if M is a spherical 3-manifold.
The aim of this paper is to prove the generalized Schoenflies theorem for the class of absolute suspensions. The question whether the finite-dimensional absolute suspensions are homeomorphic to spheres remains open. Partial solution to this question was obtained in [Sz] and [Mi]. Morton Brown gave in [Br] an ingenious proof of the generalized Schoenflies theorem. Careful analysis of his proof reveals that modulo some technical adjustments a similar argument gives an analogous result for the class...
By using the Seiberg-Witten invariant we show that the region under the Noether line in the lattice domain is covered by minimal, simply connected, symplectic 4-manifolds.