The Relationship between Homology and Topological Manifolds via Homology Transversaltiy
We define a relative coincidence Nielsen number for pairs of maps between manifolds, prove a Wecken type theorem for this invariant and give some formulae expressing by the ordinary Nielsen numbers.
Let be the space of all non-empty closed convex sets in Euclidean space ℝ ⁿ endowed with the Fell topology. We prove that for every n > 1 whereas .
Let J(n) be the hyperspace of all centrally symmetric compact convex bodies , n ≥ 2, for which the ordinary Euclidean unit ball is the ellipsoid of maximal volume contained in A (the John ellipsoid). Let be the complement of the unique O(n)-fixed point in J(n). We prove that: (1) the Banach-Mazur compactum BM(n) is homeomorphic to the orbit space J(n)/O(n) of the natural action of the orthogonal group O(n) on J(n); (2) J(n) is an O(n)-AR; (3) is an Eilenberg-MacLane space ; (4) is noncontractible;...
By a twisted product of Sⁿ we mean a closed, 1-connected 2n-manifold M whose integral cohomology ring is isomorphic to that of Sⁿ × Sⁿ, n ≥ 3. We list all such spaces that have the fixed point property.