Alexander duality, gropes and link homotopy.
An elementary proof of the following theorem is given:THEOREM. Let M be a compact connected surface without boundary. Consider a C∞ action of Rn on M. Then, if the Euler-Poincaré characteristic of M is non zero there exists a fixed point.
Within geometric topology of 3-manifolds (with or without boundary), a representation theory exists, which makes use of 4-coloured graphs. Aim of this paper is to translate the homeomorphism problem for the represented manifolds into an equivalence problem for 4-coloured graphs, by means of a finite number of graph-moves, called dipole moves. Moreover, interesting consequences are obtained, which are related with the same problem in the n-dimensional setting.