On the topological classification of pseudofree group actions on 4-manifolds. I.
We classify the genus one compact (PL) 5-manifolds and prove some results about closed 5-manifolds with free fundamental group. In particular, let be a closed connected orientable smooth -manifold with free fundamental group. Then we prove that the number of distinct smooth -manifolds homotopy equivalent to equals the -nd Betti number (mod ) of .
Suppose a metrizable separable space Y is sigma hereditarily disconnected, i.e., it is a countable union of hereditarily disconnected subspaces. We prove that the countable power of any subspace X ⊂ Y is not universal for the class ₂ of absolute -sets; moreover, if Y is an absolute -set, then contains no closed topological copy of the Nagata space = W(I,ℙ); if Y is an absolute -set, then contains no closed copy of the Smirnov space σ = W(I,0). On the other hand, the countable power of...
It is shown that for every integer n the (2n+1)th power of any locally path-connected metrizable space of the first Baire category is 𝓐₁[n]-universal, i.e., contains a closed topological copy of each at most n-dimensional metrizable σ-compact space. Also a one-dimensional σ-compact absolute retract X is found such that the power X^{n+1} is 𝓐₁[n]-universal for every n.
In this paper, a representation of closed 3-manifolds as branched coverings of the 3-sphere, proved in [13], and showing a relationship between open 3-manifolds and wild knots and arcs will be illustrated by examples. It will be shown that there exist a 3-fold simple covering p : S3 --> S3 branched over the remarkable simple closed curve of Fox [4] (a wild knot). Moves are defined such that when applied to a branching set, the corresponding covering manifold remains unchanged, while the branching...
Let F = ind lim Fₙ be an infinite-dimensional LF-space with density dens F = τ ( ≥ ℵ ₀) such that some Fₙ is infinite-dimensional and dens Fₙ = τ. It is proved that every open subset of F is homeomorphic to the product of an ℓ₂(τ)-manifold and (hence the product of an open subset of ℓ₂(τ) and ). As a consequence, any two open sets in F are homeomorphic if they have the same homotopy type.