Contact structures on (n-1)-connected (2n+1)-manifolds
In this paper we study a new structure, called a spinnable structure, on a differentiable manifold. Roughly speaking, a differentiable manifold is spinnable if it can spin around a codimension 2 submanifold, called the axis, as if the top spins.The main result is the following: let be a compact -connected -dimensional differentiable manifold , then admits a spinnable structure with axis . Making use of the codimension-one foliation on , this yields that admits a codimension-foliation.
On donne une construction de formes de contact sur toute variété décomposable en somme connexe de variétés de contact en toute dimension.
The article deals with bundles of linear algebra as a specifications of the case of smooth manifold. It allows to introduce on smooth manifold a metric by a natural way. The transfer of geometric structure arising in the linear spaces of associative algebras to a smooth manifold is also presented.
The article deals with spaces the geometry of which is defined by cyclic and anticyclic algebras. Arbitrary multiplicative function is taken as a fundamental form. Motions are given as linear transformation preserving given multiplicative function.
Une homotopie régulière , , dans une variété symplectique est dite inactive si en chaque point le déplacement infinitésimal est -orthogonal à l’espace tangent de l’objet déplacé. Si est un polyèdre de de dimension et si est un ouvert de , toute homotopie de jusqu’à est déformable en une homotopie régulière inactive. On donne une application à l’engouffrement en géométrie symplectique.