On foliations with coregular factor mapping
We discuss Taubes' idea to perturb the monopole equations on symplectic manifolds to compute the Seiberg-Witten invariants in the light of Witten's symmetry trick in the Kähler case.
Given a cohomology class there is a smooth submanifold Poincaré dual to . A special class of such embeddings is characterized by topological properties which hold for nonsingular algebraic hypersurfaces in . This note summarizes some results on the question: how does the divisibility of restrict the dual submanifolds in this class ? A formula for signatures associated with a -fold ramified cover of branched along is given and a proof is included in case .
In this paper, we prove the genericity of the observability for discrete-time systems with more outputs than inputs.
In this paper, we prove the genericity of the observability for discrete-time systems with more outputs than inputs.
Soit ; chaque métrique complète à courbure sur la sphère à trous admet une unique réalisation comme métrique induite sur une surface plongée dans dont le bord à l’infini est une réunion disjointe de cercles. De manière duale, chaque métrique complète à courbure sans géodésique fermée de longueur se réalise de manière unique comme troisième forme fondamentale d’une surface plongée dont le bord à l’infini est une réunion de cercles.
We consider smooth knottings of compact (not necessarily orientable) n-dimensional manifolds in (or ), for the cases n=2 or n=3. In a previous paper we have generalized the notion of the Reidemeister moves of classical knot theory. In this paper we examine in more detail the above mentioned dimensions. Examples are given; in particular we examine projections of twist-spun knots. Knot moves are given which demonstrate the triviality of the 1-twist spun trefoil. Another application is a smooth...