A Concordance Classification of p. 1. Homeomorphisms of Real Projective Space.
Page 1 Next
Chao-Chu Liang (1975)
Mathematische Annalen
John N. Mather (1984)
Commentarii mathematici Helvetici
Warren White (1973)
Fundamenta Mathematicae
W.-c. Hsiang, R.E. Staffeldt (1982)
Inventiones mathematicae
A.J., Long, D.D. Casson (1985)
Inventiones mathematicae
Vlad Sergiescu, Peter Greenberg (1991)
Commentarii mathematici Helvetici
Wolfgang Ebeling (1990)
Inventiones mathematicae
J.D. McCarthy (1986)
Inventiones mathematicae
Alain Chenciner (1987)
Publications Mathématiques de l'IHÉS
I.P. Malta, M.J. Pacifico (1983)
Inventiones mathematicae
S. Morita (1987)
Inventiones mathematicae
M. Kreck, J.A. Schafer (1984)
Commentarii mathematici Helvetici
Richard K. Skora (1992)
Mathematische Zeitschrift
Francis Bonahon (1983)
Annales scientifiques de l'École Normale Supérieure
Alan Weinstein (1989)
Mathematische Zeitschrift
D.B.A. Epstein (1984)
Commentarii mathematici Helvetici
John N. Mather (1974)
Commentarii mathematici Helvetici
Tomasz Rybicki (1998)
Annales Polonici Mathematici
A well known theorem of Herman-Thurston states that the identity component of the group of diffeomorphisms of a boundaryless manifold is perfect and simple. We generalize this result to manifolds with boundary. Remarks on -diffeomorphisms are included.
J.-C. Yoccoz (1984)
Annales scientifiques de l'École Normale Supérieure
Tomasz Rybicki (2012)
Annales Polonici Mathematici
It is well-known that any isotopically connected diffeomorphism group G of a manifold determines a unique singular foliation . A one-to-one correspondence between the class of singular foliations and a subclass of diffeomorphism groups is established. As an illustration of this correspondence it is shown that the commutator subgroup [G,G] of an isotopically connected, factorizable and non-fixing diffeomorphism group G is simple iff the foliation defined by [G,G] admits no proper minimal sets....
Page 1 Next