The Burnside Ring of a Compact Lie Group. I.
We show that the geometric realization of a cyclic set has a natural, -equivariant, cellular decomposition. As an application, we give another proof of a well-known isomorphism between cyclic homology of a cyclic space and -equivariant Borel homology of its geometric realization.
This paper begins the classification of topological actions on manifolds by compact, connected, Lie groups beyond the circle group. It treats multiaxial topological actions of unitary and symplectic groups without the dimension restrictions used in earlier works by M. Davis and W. C. Hsiang on differentiable actions. The general results are applied to give detailed calculations for topological actions homotopically modeled on standard multiaxial representation spheres. In the present topological...