Genera of Ramified Coverings.
We study the family of closed Riemannian n-manifolds with holonomy group isomorphic to Z2n-1, which we call generalized Hantzsche-Wendt manifolds. We prove results on their structure, compute some invariants, and find relations between them, illustrated in a graph connecting the family.
An orbifold is a topological space which ?locally looks like? the orbit space of a properly discontinuous group action on a manifold. After a brief review of basic concepts, we consider the special case 3-dimensional orbifolds of the form GammaM, where M is a simply-connected 3-dimensional homogeneous space corresponding to one of Thurston?s eight geometries, and where Gamma < Isom(M) acts properly discontinuously. A general description of these geometric orbifolds is given and the closed...
Nous présentons quelques résultats au sujet des groupes engendrés par trois involutions antiholomorphes dans le cadre du plan hyperbolique complexe .
Hass, Rubinstein, and Scott showed that every closed aspherical (irreducible) 3-manifold whose fundamental group contains the fundamental group of a closed aspherical surface, is covered by Euclidean space. This theorem does not generalize to higher dimensions. However, we provide geometric tools with which variations of this theorem can be proved in all dimensions.