The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 622

Showing per page

On ( 1 , 1 ) -tensor fields on symplectic manifolds

Anton Dekrét (1999)

Archivum Mathematicum

Two symplectic structures on a manifold M determine a (1,1)-tensor field on M . In this paper we study some properties of this field. Conversely, if A is (1,1)-tensor field on a symplectic manifold ( M , ω ) then using the natural lift theory we find conditions under which ω A , ω A ( X , Y ) = ω ( A X , Y ) , is symplectic.

On 2 p -dimensional Riemannian manifolds with positive scalar curvature

Domenico Perrone (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questo lavoro si danno alcuni risultati sugli spettri degli operatori di Laplace per varietà Riemanniane compatte con curvatura scalare positiva e di dimensione 2 p . Ad essi si aggiunge una osservazione riguardante la congettura di Yamabe.

On a class of inner maps

Edoardo Vesentini (2005)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let f be a continuous map of the closure Δ ¯ of the open unit disc Δ of C into a unital associative Banach algebra A , whose restriction to Δ is holomorphic, and which satisfies the condition whereby 0 σ f z Δ ¯ for all z Δ and σ f z Δ whenever z Δ (where σ x is the spectrum of any x A ). One of the basic results of the present paper is that f is , that is to say, σ f z is then a compact subset of Δ that does not depend on z for all z Δ ¯ . This fact will be applied to holomorphic self-maps of the open unit ball of some J * -algebra...

On a class of nonlinear problems involving a p ( x ) -Laplace type operator

Mihai Mihăilescu (2008)

Czechoslovak Mathematical Journal

We study the boundary value problem - d i v ( ( | u | p 1 ( x ) - 2 + | u | p 2 ( x ) - 2 ) u ) = f ( x , u ) in Ω , u = 0 on Ω , where Ω is a smooth bounded domain in N . Our attention is focused on two cases when f ( x , u ) = ± ( - λ | u | m ( x ) - 2 u + | u | q ( x ) - 2 u ) , where m ( x ) = max { p 1 ( x ) , p 2 ( x ) } for any x Ω ¯ or m ( x ) < q ( x ) < N · m ( x ) ( N - m ( x ) ) for any x Ω ¯ . In the former case we show the existence of infinitely many weak solutions for any λ > 0 . In the latter we prove that if λ is large enough then there exists a nontrivial weak solution. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces, combined with a 2 -symmetric version for even functionals...

On a class of nonlocal elliptic operators for compact Lie groups. Uniformization and finiteness theorem

Boris Sternin (2011)

Open Mathematics

We consider a class of nonlocal operators associated with an action of a compact Lie group G on a smooth closed manifold. Ellipticity condition and Fredholm property for elliptic operators are obtained. This class of operators is studied using pseudodifferential uniformization, which reduces the problem to a pseudodifferential operator acting in sections of infinite-dimensional bundles.

On a class of ( p , q ) -Laplacian problems involving the critical Sobolev-Hardy exponents in starshaped domain

M.S. Shahrokhi-Dehkordi (2017)

Communications in Mathematics

Let Ω n be a bounded starshaped domain and consider the ( p , q ) -Laplacian problem - Δ p u - Δ q u = λ ( 𝐱 ) | u | p - 2 u + μ | u | r - 2 u where μ is a positive parameter, 1 < q p < n , r p and p : = n p n - p is the critical Sobolev exponent. In this short note we address the question of non-existence for non-trivial solutions to the ( p , q ) -Laplacian problem. In particular we show the non-existence of non-trivial solutions to the problem by using a method based on Pohozaev identity.

Currently displaying 1 – 20 of 622

Page 1 Next