On a Class of Time Inhomogeneous Nonsingular Flows and Schrödinger Operators.
In this article we study the positivity of the 4-th order Paneitz operator for closed 3-manifolds. We prove that the connected sum of two such 3-manifold retains the same positivity property. We also solve the analogue of the Yamabe equation for such a manifold.
In this article we study the positivity of the 4-th order Paneitz operator for closed 3-manifolds. We prove that the connected sum of two such 3-manifold retains the same positivity property. We also solve the analogue of the Yamabe equation for such a manifold.
We know well difference Picard-Vessiot theory, Galois theory of linear difference equations. We propose a general Galois theory of difference equations that generalizes Picard-Vessiot theory. For every difference field extension of characteristic , we attach its Galois group, which is a group of coordinate transformation.
We apply the General Galois Theory of difference equations introduced in the first part to concrete examples. The General Galois Theory allows us to define a discrete dynamical system being infinitesimally solvable, which is a finer notion than being integrable. We determine all the infinitesimally solvable discrete dynamical systems on the compact Riemann surfaces.
Helmholtz conditions in the calculus of variations are necessary and sufficient conditions for a system of differential equations to be variational ‘as it stands’. It is known that this property geometrically means that the dynamical form representing the equations can be completed to a closed form. We study an analogous property for differential forms of degree 3, so-called Helmholtz-type forms in mechanics (), and obtain a generalization of Helmholtz conditions to this case.
Dealing with the generalized Calabi-Yau equation proposed by Gromov on closed almost-Kähler manifolds, we extend to arbitrary dimension a non-existence result proved in complex dimension .