Déformations différentielles à coefficients constants et produits de Moyal généralisés
We introduce a new cohomology for Lie algebroids, and prove that it provides a differential graded Lie algebra which “controls” deformations of the structure bracket of the algebroid.
We construct biharmonic non-harmonic maps between Riemannian manifolds and by first making the ansatz that be a harmonic map and then deforming the metric on by to render biharmonic, where is a smooth function with gradient of constant norm on and . We construct new examples of biharmonic non-harmonic maps, and we characterize the biharmonicity of some curves on Riemannian manifolds.
The homotopy fiber of the inclusion from the long embedding space to the long immersion space is known to be an iterated based loop space (if the codimension is greater than two). In this paper we deloop the homotopy fiber to obtain the topological Stiefel manifold, combining results of Lashof and of Lees. We also give a delooping of the long embedding space, which can be regarded as a version of Morlet-Burghelea-Lashof's delooping of the diffeomorphism group of the disk relative to the boundary....
2000 Mathematics Subject Classification: 49J52, 49J50, 58C20, 26B09.We show that the properties of dense subdifferentiability and of trustworthiness are equivalent for any subdifferential satisfying a small set of natural axioms. The proof relies on a remarkable property of the subdifferential of the inf-convolution of two (non necessarily convex) functions. We also show the equivalence of the dense subdifferentiability property with other basic properties of subdifferentials such as a weak* Lipschitz...
On donne une condition suffisante explicite et générique pour qu’une forme de Pfaff à deux variables complexes ait ses feuilles denses tant localement que globalement.