Travaux de Thom et Mather sur la stabilité topologique
Sur une pseudo-variété de dimension paire à une singularité conique isolée, des triplets spectraux sont construits à partir d’une classe d’opérateurs différentiels elliptiques de type Fuchs, contenant les opérateurs de Dirac à coefficients dans des fibrés plats dans la direction radiale. Ces derniers engendrent, sous une hypothèse raisonnable, le groupe de -homologie pair tensorisé par de la pseudo-variété et leur caractère de Chern est calculé.
A (smooth) dynamical system with transformation group ⁿ is a triple (A,ⁿ,α), consisting of a unital locally convex algebra A, the n-torus ⁿ and a group homomorphism α: ⁿ → Aut(A), which induces a (smooth) continuous action of ⁿ on A. In this paper we present a new, geometrically oriented approach to the noncommutative geometry of trivial principal ⁿ-bundles based on such dynamical systems, i.e., we call a dynamical system (A,ⁿ,α) a trivial noncommutative principal ⁿ-bundle if each isotypic component...
We consider a real analytic dynamical system G×M→M with nonempty fixed point subset M G. Using symmetries of G×M→M, we give some conditions which imply the existence of transitive Lie transformation group with G as isotropy subgroup.
For the entire collection see Zbl 0699.00032.
Connes and Moscovici recently studied "twisted" spectral triples (A,H,D) in which the commutators [D,a] are replaced by D∘a - σ(a)∘D, where σ is a second representation of A on H. The aim of this note is to point out that this yields representations of arbitrary covariant differential calculi over Hopf algebras in the sense of Woronowicz. For compact quantum groups, H can be completed to a Hilbert space and the calculus is given by bounded operators. At the end, we discuss an explicit example of...
Twistor forms are a natural generalization of conformal vector fields on riemannian manifolds. They are defined as sections in the kernel of a conformally invariant first order differential operator. We study twistor forms on compact Kähler manifolds and give a complete description up to special forms in the middle dimension. In particular, we show that they are closely related to hamiltonian 2-forms. This provides the first examples of compact Kähler manifolds with non–parallel twistor forms in...
Summary: We describe explicitly the kernels of higher spin twistor operators on standard even dimensional Euclidean space , standard even dimensional sphere , and standard even dimensional hyperbolic space , using realizations of invariant differential operators inside spinor valued differential forms. The kernels are finite dimensional vector spaces (of the same cardinality) generated by spinor valued polynomials on .