Arithmetic groups of gauge transformations.
A certain family of homogeneous spaces is investigated. Basic invariant operators for each of these structures are presented and some analogies to Levi-Civita connections of Riemannian geometry are pointed out.
We study doubly-periodic instantons, i.e. instantons on the product of a 1-dimensional complex torus with a complex line , with quadratic curvature decay. We determine the asymptotic behaviour of these instantons, constructing new asymptotic invariants. We show that the underlying holomorphic bundle extends to . The converse statement is also true, namely a holomorphic bundle on which is flat on the torus at infinity, and satisfies a stability condition, comes from a doubly-periodic instanton....
For Schrödinger operator on Riemannian manifolds with conical end, we study the contribution of zero energy resonant states to the singularity of the resolvent of near zero. Long-time expansion of the Schrödinger group is obtained under a non-trapping condition at high energies.
Consider the group G:=PSL2(R) and its subgroups Γ:= PSL2(Z) and Γ':=DSL2(Z). G/Γ is a canonical realization (up to an homeomorphism) of the complement S3T of the trefoil knot T, and G/Γ' is a canonical realization of the 6-fold branched cyclic cover of S3T, which has a 3-dimensional cohomology of 1-forms.Putting natural left-invariant Riemannian metrics on G, it makes sense to ask which is the asymptotic homology performed by the Brownian motion in G/Γ', describing thereby in an intrinsic way part...
In this paper we obtain the full asymptotic expansion of the Bergman-Hodge kernel associated to a high power of a holomorphic line bundle with non-degenerate curvature. We also explore some relations with asymptotic holomorphic sections on symplectic manifolds.