Finite energy maps from Riemannian polyhedra to metric spaces.
We construct a map on the space of interval exchange transformations, which generalizes the classical map on the interval, related to continued fraction expansion. This map is based on Rauzy induction, but unlike its relative kown up to now, the map is ergodic with respect to some finite absolutely continuous measure on the space of interval exchange transformations. We present the prescription for calculation of this measure based on technique developed by W. Veech for Rauzy induction.We study...
We study here several finiteness problems concerning affine Nash manifolds and Nash subsets . Three main results are: (i) A Nash function on a semialgebraic subset of has a Nash extension to an open semialgebraic neighborhood of in , (ii) A Nash set that has only normal crossings in can be covered by finitely many open semialgebraic sets equipped with Nash diffeomorphisms such that , (iii) Every affine Nash manifold with corners is a closed subset of an affine Nash manifold...
We consider a contractible closure of the space of Legendrian knots in the standard contact 3-space. We show that in this context the space of finite-type complex-valued invariants of Legendrian knots is isomorphic to that of framed knots in with an extra order 1 generator (Maslov index) added.
We prove the Finsler analog of the conformal Lichnerowicz-Obata conjecture showing that a complete and essential conformal vector field on a non-Riemannian Finsler manifold is a homothetic vector field of a Minkowski metric.