The canonical tensor fields of type on
We prove that every natural affinor on is proportional to the identity affinor if dim.
We prove that every natural affinor on is proportional to the identity affinor if dim.
The existence of solutions to the Cauchy problem for a nonlinear parabolic equation describing the gravitational interaction of particles is studied under minimal regularity assumptions on the initial conditions. Self-similar solutions are constructed for some homogeneous initial data.
The author propose what is the principal part of linear systems of partial differential equations in the Cauchy problem through the normal form of systems in the meromorphic formal symbol class and the theory of weighted determinant. As applications, he choose the necessary and sufficient conditions for the analytic well-posedness ( Cauchy-Kowalevskaya theorem ) and well-posedness (Levi condition).
We define suitable Sobolev topologies on the space of connections of bounded geometry and finite Yang-Mills action and the gauge group and show that the corresponding configuration space is a stratified space. The underlying open manifold is assumed to have bounded geometry.
We present a generalization of the classical Conley index defined for flows on locally compact spaces to flows on an infinite-dimensional real Hilbert space H generated by vector fields of the form f: H → H, f(x) = Lx + K(x), where L: H → H is a bounded linear operator satisfying some technical assumptions and K is a completely continuous perturbation. Simple examples are presented to show how this new invariant can be applied in searching critical points of strongly indefinite functionals having...