Displaying 41 – 60 of 489

Showing per page

The Cauchy problem for systems through the normal form of systems and theory of weighted determinant

Waichiro Matsumoto (1998/1999)

Séminaire Équations aux dérivées partielles

The author propose what is the principal part of linear systems of partial differential equations in the Cauchy problem through the normal form of systems in the meromorphic formal symbol class and the theory of weighted determinant. As applications, he choose the necessary and sufficient conditions for the analytic well-posedness ( Cauchy-Kowalevskaya theorem ) and C well-posedness (Levi condition).

The configuration space of gauge theory on open manifolds of bounded geometry

Jürgen Eichhorn, Gerd Heber (1997)

Banach Center Publications

We define suitable Sobolev topologies on the space 𝒞 P ( B k , f ) of connections of bounded geometry and finite Yang-Mills action and the gauge group and show that the corresponding configuration space is a stratified space. The underlying open manifold is assumed to have bounded geometry.

The Conley index in Hilbert spaces and its applications

K. Gęba, M. Izydorek, A. Pruszko (1999)

Studia Mathematica

We present a generalization of the classical Conley index defined for flows on locally compact spaces to flows on an infinite-dimensional real Hilbert space H generated by vector fields of the form f: H → H, f(x) = Lx + K(x), where L: H → H is a bounded linear operator satisfying some technical assumptions and K is a completely continuous perturbation. Simple examples are presented to show how this new invariant can be applied in searching critical points of strongly indefinite functionals having...

Currently displaying 41 – 60 of 489