Harmonie Forms Dual to Geodesic Cycles in Quotients of SU (p, 1).
Y.L. Tong, S.P. Wang (1981)
Mathematische Annalen
Shing-Tung Yau, Jürgen Jost (1983)
Mathematische Annalen
Juraj Húska, Peter Poláčik, Mikhail V. Safonov (2007)
Annales de l'I.H.P. Analyse non linéaire
Dominique Bakry, Zhongmin M. Qian (1999)
Revista Matemática Iberoamericana
Several new Harnack estimates for positive solutions of the heat equation on a complete Riemannian manifold with Ricci curvature bounded below by a positive (or a negative) constant are established. These estimates are sharp both for small time, for large time and for large distance, and lead to new estimates for the heat kernel of a manifold with Ricci curvature bounded below.
Biroli, Marco, Marchi, Silvana (2007)
Boundary Value Problems [electronic only]
Fei-Tsen Liang (2003)
Rendiconti del Seminario Matematico della Università di Padova
Harris, Adam (1999)
Proceedings of the 18th Winter School "Geometry and Physics"
Krump, Lukáš, Souček, Vladimír (2003)
Proceedings of the 22nd Winter School "Geometry and Physics"
The invariant differential operators on a manifold with a given parabolic structure come in two classes, standard and non-standard, and can be further subdivided into regular and singular ones. The standard regular operators come in repeated patterns, the Bernstein-Gelfand-Gelfand sequences, described by Hasse diagrams. In this paper, the authors present an alternative characterization of Hasse diagrams, which is quite efficient in the case of low gradings. Several examples are given.
Carlos Gustavo T. de A. Moreira (2001)
Publicacions Matemàtiques
Let F : U ⊂ Rn → Rm be a differentiable function and p < m an integer. If k ≥ 1 is an integer, α ∈ [0, 1] and F ∈ Ck+(α), if we set Cp(F) = {x ∈ U | rank(Df(x)) ≤ p} then the Hausdorff measure of dimension (p + (n-p)/(k+α)) of F(Cp(F)) is zero.
Milan Kučera (1972)
Commentationes Mathematicae Universitatis Carolinae
Zayed, E.M.E. (1997)
International Journal of Mathematics and Mathematical Sciences
S. Desjardins, P. Gilkey (1994)
Mathematische Zeitschrift
Wolfgang Woess (2001)
Bollettino dell'Unione Matematica Italiana
Medolla e Setti [6] studiano l'andamento della diffusione del calore generata dal Laplaciano discreto su un albero omogeneo e dimostrano che il calore è asintoticamente concentrato in «anelli» che viaggiano verso l'infinito a velocità lineare e la cui larghezza divisa per tende all'infinito, dove è il tempo. Qui si spiega come un risultato più preciso si ottiene come corollario della legge dei grandi numeri e del teorema del limite centrale per la passeggiata aleatoria sull'albero. Inoltre,...
Chang Kung-Ching (1989)
Annales de l'I.H.P. Analyse non linéaire
Olivier Rey (1991)
Mathematische Annalen
Y. Chen, M.-C. Hong, N. Hungerbühler (1994)
Mathematische Zeitschrift
Jiayu Li (1994)
Mathematische Zeitschrift
Santiago R. Simanca (2005)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Let be a closed polarized complex manifold of Kähler type. Let be the maximal compact subgroup of the automorphism group of . On the space of Kähler metrics that are invariant under and represent the cohomology class , we define a flow equation whose critical points are the extremal metrics,i.e.those that minimize the square of the -norm of the scalar curvature. We prove that the dynamical system in this space of metrics defined by the said flow does not have periodic orbits, and that its...
E.B. Davies, M. Lianantonakis (1993)
Geometric and functional analysis
Nick Dungey (2005)
Publicacions Matemàtiques
Let G be a Lie group. The main new result of this paper is an estimate in L2 (G) for the Davies perturbation of the semigroup generated by a centered sublaplacian H on G. When G is amenable, such estimates hold only for sublaplacians which are centered. Our semigroup estimate enables us to give new proofs of Gaussian heat kernel estimates established by Varopoulos on amenable Lie groups and by Alexopoulos on Lie groups of polynomial growth.