Heat kernel bounds for higher order elliptic operators
We prove two-sided estimates of heat kernels on non-parabolic Riemannian manifolds with ends, assuming that the heat kernel on each end separately satisfies the Li-Yau estimate.
Let M be a smooth connected non-compact geodesically complete Riemannian manifold, Δ denote the Laplace operator associated with the Riemannian metric, n ≥ 2 be the dimension of M. Consider the heat equation on the manifoldut - Δu = 0,where u = u(x,t), x ∈ M, t > 0. The heat kernel p(x,y,t) is by definition the smallest positive fundamental solution to the heat equation which exists on any manifold (see [Ch], [D]). The purpose of the present work is to obtain uniform upper bounds of p(x,y,t)...
We introduce Hecke operators on de Rham cohomology of compact oriented manifolds. When the manifold is a quotient of a Hermitian symmetric domain, we prove that certain types of such operators are compatible with the usual Hecke operators on automorphic forms.
The phase space of general relativistic test particle is defined as the 1-jet space of motions. A Lorentzian metric defines the canonical contact structure on the odd-dimensional phase space. In the paper we study infinitesimal symmetries of the gravitational contact phase structure which are not generated by spacetime infinitesimal symmetries, i.e. they are hidden symmetries. We prove that Killing multivector fields admit hidden symmetries of the gravitational contact phase structure and we give...
Let G be a Lie group of polynomial volume growth, with Lie algebra g. Consider a second-order, right-invariant, subelliptic differential operator H on G, and the associated semigroup St = e-tH. We identify an ideal n' of g such that H satisfies global regularity estimates for spatial derivatives of all orders, when the derivatives are taken in the direction of n'. The regularity is expressed as L2 estimates for derivatives of the semigroup, and as Gaussian bounds for derivatives of the heat kernel....