Displaying 141 – 160 of 390

Showing per page

Locally variational invariant field equations and global currents: Chern-Simons theories

Mauro Francaviglia, M. Palese, E. Winterroth (2012)

Communications in Mathematics

We introduce the concept of conserved current variationally associated with locally variational invariant field equations. The invariance of the variation of the corresponding local presentation is a sufficient condition for the current beeing variationally equivalent to a global one. The case of a Chern-Simons theory is worked out and a global current is variationally associated with a Chern-Simons local Lagrangian.

Multivector fields and connections. Applications to field theories.

Arturo Echeverría-Enríquez, Miguel Carlos Muñoz-Lecanda, Narciso Román-Roy (2002)

RACSAM

Se estudia la integrabilidad de campos multivectoriales en variedades diferenciables y la relación entre algunos tipos de campos multivectoriales en un fibrado de jets y conexiones en dicho fibrado. Como caso particular se relacionan los campos multivectoriales integrables y las conexiones cuyas secciones integrales son holonómicas. Como aplicación de todo ello, estos resultados permiten escribir las ecuaciones de campo de las teorías clásicas de campos de primer orden en varias formas equivalentes....

Natural affinors on higher order cotangent bundle

Jan Kurek (1992)

Archivum Mathematicum

All natural affinors on the r -th order cotangent bundle T r * M are determined. Basic affinors of this type are the identity affinor id of T T r * M and the s -th power affinors Q M s : T T r * M V T r * M with s = 1 , , r defined by the s -th power transformations A s r , r of T r * M . An arbitrary natural affinor is a linear combination of the basic ones.

Natural affinors on ( J r , s , q ( . , 1 , 1 ) 0 ) *

Włodzimierz M. Mikulski (2001)

Commentationes Mathematicae Universitatis Carolinae

Let r , s , q , m , n be such that s r q . Let Y be a fibered manifold with m -dimensional basis and n -dimensional fibers. All natural affinors on ( J r , s , q ( Y , 1 , 1 ) 0 ) * are classified. It is deduced that there is no natural generalized connection on ( J r , s , q ( Y , 1 , 1 ) 0 ) * . Similar problems with ( J r , s ( Y , ) 0 ) * instead of ( J r , s , q ( Y , 1 , 1 ) 0 ) * are solved.

Natural differential operators between some natural bundles

Włodzimierz M. Mikulski (1993)

Mathematica Bohemica

Let F and G be two natural bundles over n -manifolds. We prove that if F is of type (I) and G is of type (II), then any natural differential operator of F into G is of order 0. We give examples of natural bundles of type (I) or of type (II). As an application of the main theorem we determine all natural differential operators between some natural bundles.

Natural maps depending on reductions of frame bundles

Ivan Kolář (2011)

Annales Polonici Mathematici

We clarify how the natural transformations of fiber product preserving bundle functors on m can be constructed by using reductions of the rth order frame bundle of the base, m being the category of fibered manifolds with m-dimensional bases and fiber preserving maps with local diffeomorphisms as base maps. The iteration of two general r-jet functors is discussed in detail.

Natural operators in the view of Cartan geometries

Martin Panák (2003)

Archivum Mathematicum

We prove, that r -th order gauge natural operators on the bundle of Cartan connections with a target in the gauge natural bundles of the order ( 1 , 0 ) (“tensor bundles”) factorize through the curvature and its invariant derivatives up to order r - 1 . On the course to this result we also prove that the invariant derivations (a generalization of the covariant derivation for Cartan geometries) of the curvature function of a Cartan connection have the tensor character. A modification of the theorem is given for...

Currently displaying 141 – 160 of 390