Lemme de Morse transverse pour des puissances de formes de volume
Regular Poisson structures with fixed characteristic foliation F are described by means of foliated symplectic forms. Associated to each of these structures, there is a class in the second group of foliated cohomology H2(F). Using a foliated version of Moser's lemma, we study the isotopy classes of these structures in relation with their cohomology class. Explicit examples, with dim F = 2, are described.
Let (M,ℱ) be a foliated manifold. We describe all natural operators lifting ℱ-adapted (i.e. projectable in adapted coordinates) classical linear connections ∇ on (M,ℱ) into classical linear connections (∇) on the rth order adapted frame bundle .
A classification of all -natural operators lifting p-dimensional distributions D ⊂ TM on m-manifolds M to q-dimensional distributions A(D) ⊂ TT*M on the cotangent bundle T*M is given.
We classify all natural operators lifting linear vector fields on vector bundles to vector fields on vertical fiber product preserving gauge bundles over vector bundles. We explain this result for some known examples of such bundles.
We classify all natural operators lifting projectable vector fields from fibered manifolds to vector fields on vertical fiber product preserving vector bundles. We explain this result for some more known such bundles.
We describe all -gauge-natural operators lifting right-invariant vector fields X on principal G-bundles P → M with m-dimensional bases into vector fields (X) on the rth order principal prolongation of P → M. In other words, we classify all -natural transformations covering the identity of , where is the r-jet prolongation of the Lie algebroid LP=TP/G of P, i.e. we find all -natural transformations which are similar to the Kumpera-Spencer isomorphism . We formulate axioms which characterize...
Let m and r be natural numbers and let be the rth order frame bundle functor. Let and be natural bundles, where . We describe all -natural operators A transforming sections σ of and classical linear connections ∇ on M into sections A(σ,∇) of . We apply this general classification result to many important natural bundles F and G and obtain many particular classifications.
We describe all natural operators lifting nowhere vanishing vector fields X on m-dimensional manifolds M to vector fields (X) on the rth order frame bundle over M. Next, we describe all natural operators lifting vector fields X on m-manifolds M to vector fields on . In both cases we deduce that the spaces of all operators in question form free -dimensional modules over algebras of all smooth maps and respectively, where . We explicitly construct bases of these modules. In particular, we...
Let be fixed natural numbers. We prove that for -manifolds the set of all linear natural operators is a finitely dimensional vector space over . We construct explicitly the bases of the vector spaces. As a corollary we find all linear natural operators .