Page 1 Next

Displaying 1 – 20 of 79

Showing per page

Calculus of variations with differential forms

Saugata Bandyopadhyay, Bernard Dacorogna, Swarnendu Sil (2015)

Journal of the European Mathematical Society

We study integrals of the form Ω f d ω , where 1 k n , f : Λ k is continuous and ω is a k - 1 -form. We introduce the appropriate notions of convexity, namely ext. one convexity, ext. quasiconvexity and ext. polyconvexity. We study their relations, give several examples and counterexamples. We finally conclude with an application to a minimization problem.

Canonical 1-forms on higher order adapted frame bundles

Jan Kurek, Włodzimierz M. Mikulski (2008)

Archivum Mathematicum

Let ( M , ) be a foliated m + n -dimensional manifold M with n -dimensional foliation . Let V be a finite dimensional vector space over 𝐑 . We describe all canonical ( ol m , n -invariant) V -valued 1 -forms Θ : T P r ( M , ) V on the r -th order adapted frame bundle P r ( M , ) of ( M , ) .

Canonical symplectic structures on the r-th order tangent bundle of a symplectic manifold.

Jan Kurek, Wlodzimierz M. Mikulski (2006)

Extracta Mathematicae

We describe all canonical 2-forms Λ(ω) on the r-th order tangent bundle TrM = Jr0 (R;M) of a symplectic manifold (M, ω). As a corollary we deduce that all canonical symplectic structures Λ(ω) on TrM over a symplectic manifold (M, ω) are of the form Λ(ω) = Σrk=0 αkω(k) for all real numbers αk with αr ≠ 0, where ω(k) is the (k)-lift (in the sense of A. Morimoto) of ω to TrM.

Canonical tensor fields of type (p,0) on Weil bundles

Jacek Dębecki (2006)

Annales Polonici Mathematici

We give a classification of canonical tensor fields of type (p,0) on an arbitrary Weil bundle over n-dimensional manifolds under the condition that n ≥ p. Roughly speaking, the result we obtain says that each such canonical tensor field is a sum of tensor products of canonical vector fields on the Weil bundle.

Cartan geometry, supergravity and group manifold approach

Jordan François, Lucrezia Ravera (2024)

Archivum Mathematicum

We make a case for the unique relevance of Cartan geometry for gauge theories of gravity and supergravity. We introduce our discussion by recapitulating historical threads, providing motivations. In a first part we review the geometry of classical gauge theory, as a background for understanding gauge theories of gravity in terms of Cartan geometry. The second part introduces the basics of the group manifold approach to supergravity, hinting at the deep rooted connections to Cartan supergeometry....

Champs de vecteurs et formes différentielles sur une variété des points proches

Basile Guy Richard Bossoto, Eugène Okassa (2008)

Archivum Mathematicum

Let M be a smooth manifold, A a local algebra in sense of André Weil, M A the manifold of near points on M of kind A and 𝔛 ( M A ) the module of vector fields on M A . We give a new definition of vector fields on M A and we show that 𝔛 ( M A ) is a Lie algebra over A . We study the cohomology of A -differential forms. Résumé. On considère M une variété différentielle, A une algèbre locale au sens d’André Weil, M A la variété des points proches de M d’espèce A et 𝔛 ( M A ) le module des champs de vecteurs sur M A . On donne une nouvelle...

Champs totalement radiaux sur une structure de Thom-Mather

Stéphane Simon (1995)

Annales de l'institut Fourier

Dans la première partie de ce travail, on prouve l’existence de champs stratifiés dits totalement radiaux sur un ensemble stratifié abstrait (e.s.a.). Ces champs sont stables et peuvent être choisis continus sur les espaces stratifiés plongés qui sont ( C ) -réguliers au sens de K. Bekka. Dans la seconde partie, on établit pour ces espaces un théorème de Poincaré-Hopf pour les champs totalement radiaux continus. On en déduit un résultat similaire pour les e.s.a.

Currently displaying 1 – 20 of 79

Page 1 Next